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Background

• KECCAK

• Sponge construction
• Operate on a state of 𝑏 = 𝑟 + 𝑐 bits.

• The state can be described as 5 × 5 𝑤-bit lanes.

• KECCAK-𝑓 permutation
• Consist of 12 + 2𝑙𝑜𝑔2(𝑤) rounds.

• 5 steps for each round.

• The KECCAK Crunchy Crypto Collision and Pre-image Contest
• 𝑏 is in {200, 400, 800, 1600}.
• 𝑐 = 160 (output size is 80-bit for pre-image)
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KECCAK[r = 640, c = 160, nr = 4]

• Related previous techniques
• linear structure [GLS16]

• Maintain linear expressions of initial variables through rounds.
• Enable pre-image recovery via solving linear systems repeatedly.

• allocating approach [LS19]
• Apply better linear structure.
• Use two-block model with trade-off.

• (non)linear structure [Raj19, LIMY21, WWF+21]
• Allow quadratic bits in linear structure.
• Solve quadratic equation systems.

• zero coefficient [HLY21]
• Determine column sums carefully.
• Obtain more linear dependent bit-pairs.

• and so on ……
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KECCAK[r = 640, c = 160, nr = 4]

• Overview
• Select 10 lanes on 𝜃1 as variables.
• Backward: 

• 𝑥, 𝑥, 1, 𝑥 + 𝑦, 0 1, 𝑥, 1, 𝑦, 0

• Starting state is still linear.

• Add equations to match capacity part.

• Forward:
• Add equations to control column sums on 𝜃1.

• Add equations to restrict some linear bits on 𝑋2 constant bits.

• Some bits on 𝜃3 will be linearized, so that some bits on 𝑋3 will become linear.

• Add equations to promote the probability of matching the digest.

𝜒−1

Why select these 𝟏𝟎 lanes.
Why use these specific 

values for the column sums.

How to determine the 
bits and equations for 

linearization? 4/31



KECCAK[r = 640, c = 160, nr = 4]

• Why selecting these 10 lanes on 𝜃1 as variables?
• There are 5 choices.

• Previous attacks on round-reduced KECCAK-224/256 select the first type. 
• Many extra matching gains

• Only 21 (for padding) extra matching gains for KECCAK[r=640, c=160].

• Different choices affect the distribution of linear/constant bits on 𝜃2.
• Select the best choice for subsequent linearization according to given digest.

𝜌−1 ∘ 𝜋−1

∘ 𝜒−1 ∘ 𝜄−1

match 𝜃−1

𝜌−1 ∘ 𝜋−1

∘ 𝜒−1 ∘ 𝜄−1

match 𝜃−1
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KECCAK[r = 640, c = 160, nr = 4]

• The specific column sums on 𝜃1

• The property for 𝜃 operation
• 𝑎 ⊕ 𝑏 = 𝑐𝑜𝑛𝑠𝑡 = 𝑑 ⊕ 𝑒

• 𝑎 ⊕ 𝑐 = 𝑐𝑜𝑛𝑠𝑡 = 𝑑 ⊕ 𝑓

• When restrict 𝑑 a constant bit, 𝑒 and 𝑓will be constant simultaneously. 
• Try to make constant bits on 𝜃2 as many as possible.

• Use specific column sums on 𝜃1 so that there are 3 constant bits for most 
rows on 𝜃2. 
• 𝑥, 0, 𝑦, 0,1 𝑥 + 𝑦, 0, 𝑦 + 1,0,1

• Accordingly, there are 3 constant bits for most columns on 𝜃2

• Restrict less bits on 𝑋2 and linearize more bits on 𝜃3.

d

e
f

a

b
c

𝜃

𝜒
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KECCAK[r = 640, c = 160, nr = 4]

• How to determine the strategy of linearizing the last two rounds?
• The linearization

• Remain 320 − 63 − 1 − 158 = 98 degrees of freedom on 𝑋2.
• 63 for column sums on 𝜃1 (−1 because inherent linear dependence) 

• 1 for padding rule

• 158 for matching starting state (−1 because inherent linear dependence, another −1
because two capacity candidates) 

• Spend some to restrict some linear bits on 𝑋2 constant bits.
• Every equation can restrict three bits on 𝑋2 constant bits.

• Some bits on 𝑋3 can be linearized.
• Every constant bit on 𝑋2 will linearize two bits on 𝜃3.

• Every specific 11 linearized bits on 𝜃3 will linearize a bit on 𝑋3.

• Equations can be added on 𝑋3 to promote probability of digest matching.
• Precompute a table of optimal matching probabilities under various conditions.

• MILP model. 7/31



KECCAK[r = 640, c = 160, nr = 4]

• Details of MILP model (first part, linearize last two rounds)
• Use 800 + 800 + 160 = 1760 Boolean variables.

• Whether add an equation on 𝑋𝑥,𝑦,𝑧
2 .

• Whether the bit 𝜃𝑥,𝑦,𝑧
3 is linearized.

• Whether the bit 𝑋𝑥,0,𝑧
3 is linearized.

• Add 800 equations for 𝜃3. 
• For example,                                                                          means: 𝜃4,0,0

3 will be 
linearized when an equation is added to restrict any of these six bits on 𝑋2. 

• Add 11 × 160 = 1760 equations for 𝑋3.
• For example,                                                means: 𝑋0,0,0

3 will be linearized when the 11
bits on 𝜃3 are all linearized.
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KECCAK[r = 640, c = 160, nr = 4]

• Details of MILP model (second part, modeling an S-box (a row))
• Use 32 × 5 = 160 Boolean variables (for 𝑧𝑡ℎ row).

• Transform to 32 cases. For example:
• Case 22 = (10110)2 means 2𝑛𝑑, 3𝑟𝑑, and 5𝑡ℎ bits are linearized.

• 5 variables for each case.
• The first 𝑘 variables are 1 means adding (𝑘 − 1) equations.

• Add an equation: 
• The linearization circumstance must belong to only one case.

• For each case (32 cases in total):
• Add at most 5 equations (Case 22 = (10110)2 for example): 

• May belong to case 22 when the three bits on 𝑋3 are all linearized.

• Add 4 equations: 
• The restrictions will be added one by one.
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KECCAK[r = 640, c = 160, nr = 4]

• Details of MILP model (third part, global constraint and objective)
• Add an equation: 

• The number of used degrees of freedom is limited by 98.

• Leave around 7 degrees of freedom because quadratic equation system with 34
equations on 7 variables can be solved linearly.

• Leaving one more degree of freedom does not affect the result of MILP model while it 
speeds up the solving time.

• The objective:
• The gain (probability calculated by 𝑙𝑜𝑔2) of adding one more equation (when 𝑎𝑖,𝑗

𝑧 = 1).

• 𝑝𝑧,𝑖,𝑗 is a precomputed table recording the best probability under following conditions:

• 𝑧𝑡ℎ row

• 𝑖𝑡ℎ case of linearization (which bits on 𝑋3 are linearized and can be controlled)

• 𝑗 added equations
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KECCAK[r = 640, c = 160, nr = 4]

• Complexity
• There are 320 variables on 𝜃1.
• Add 158 equations to match one of capacity parts. One more for padding.
• Add 63 equations to control column sums on 𝜃1. 
• Add 71 equations to restrict some linear bits on 𝑋2 constant bits.

• 19 bits on 𝑋3 will become linear.

• Add 19 equations to promote the probability of matching the digest.
• Bring gains of ~216.5.

• Solve quadratic equation systems with 34 quadratic equations on 8 variables.

• Try ~256.5 different guesses for 71 equations on 𝑋2.
• It is expected to have one solution.
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KECCAK[r = 40, c = 160, nr = 2]

• First method (earlier attempt)
• By solving quadratic equation systems.
• Reduce the number of quadratic terms.
• Although the complexity is relatively high, it is independent of round constants.

• Second method
• Based on combination of linear structures and symmetries.
• Round constant is zero for 𝑖𝑟 = 3.
• Solve in backward direction.
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KECCAK[r = 40, c = 160, nr = 2]

• Overview of the first method
• Solve the first 40-bit.
• Let the remaining 40-bit digest matched randomly.

• Use quadratic structure and solve equation systems 
• Leave as many degrees of freedom as possible.
• Produce as few quadratic terms as possible.
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KECCAK[r = 40, c = 160, nr = 2]

• The quadratic structure
• 5 × 8 − 1 = 39 variables on 𝜃0

• 2 × 8 = 16 equations restricting column sums
• Rest 23 degrees of freedom.
• 40 equations for (first 40-bit) digest matching

• 8 linear equations, and 32 quadratic equations

• Guess four more bits to solve the quadratic equation system linearly.
• Rest around 19 degrees of freedom, and require guessing around 221 times for 

matching the first 40-bit digest.

• Randomly match the rest 40-bit digest.

y
yx

x

0 2

17

★

★

𝜋 ∘ 𝜌 ι ∘ χ

4 × 8 = 32 different 
quadratic terms
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KECCAK[r = 40, c = 160, nr = 2]

• Overview of the second method
• Use linear structure produce the last block:

• Capacity part of starting state is symmetric.

• Match the first 40-bit digest with 1 probability.

• Repeat 240 times, and match the whole digest.
• Try different symmetric message blocks and compute backward.

• Match the all zero 𝐼𝑉.

2 rounds

symmetric

2 rounds

symmetric

……2 rounds

symmetric
better 

symmetric

2 rounds

Randomly matched
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KECCAK[r = 40, c = 160, nr = 2]

• Get the last message block
• 25 × 8 = 200 variables on Θ0

• Each lane on the capacity part of Θ0 is symmetric (e.g. 0x11).
• Add 20 × 4 = 80 equations.

• The bits on 2𝑛𝑑, 4𝑡ℎ, and 5𝑡ℎ planes of Ρ0 are constant bits.
• Add 15 × 8 = 120 equations.

• Match the first 40-bit digest on Θ2.
• Add 40 equations.

• 41 equations among them are linear-dependent.
• The number of degrees of freedom is enough.

• Try different constant settings on Ρ0, until the last 40-bit digest satisfied.

2 rounds

symmetric

𝜋 ∘ 𝜌 ι ∘ χ𝜃 𝜋 ∘ 𝜌 ∘ 𝜃 ι ∘ χ
symmetric

Θ0 Ρ0 Χ0 Θ1 Χ1 Θ2
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KECCAK[r = 40, c = 160, nr = 2]

• The backward process
• Start from a symmetric capacity.
• Select different message blocks, so that the state is symmetric before inverse ι.
• For the property of 𝜃−1 ∘ 𝜌−1 ∘ 𝜋−1 ∘ 𝜒−1 operations, state stays symmetric.
• Select the start round index 𝑖𝑟 = 3, where the round constant is zero for the 

first round (𝑟𝑐𝑖𝑟=3 = 0).The property of symmetry will always hold.
• The property of symmetry may be better and better.

• period i = 4 to period i = 2 to period i = 1 to all 0 (e.g. 0x11 → 0x𝑎𝑎 → 0x𝑓𝑓 → 0x00).

symmetric

symmetric

Θ2

message

ι−1
symmetric

𝐼1

symmetric

Θ0

message

absorb 
message

𝜃−1 ∘ 𝜌−1

∘ 𝜋−1 ∘ 𝜒−1symmetric

Θ1

ι−1
symmetric

𝜃−1 ∘ 𝜌−1

∘ 𝜋−1 ∘ 𝜒−1symmetric

𝐼0Θ0

𝑟𝑐3 = 0

a9 aa 33 00 88 
33 66 ee 88 44 
22 ee ee cc dd 
33 ff cc 99 dd 
bb 66 55 88 dd

de aa aa 00 00 
00 55 aa 00 aa 
00 55 00 00 55 
ff 00 00 aa 00 
aa 00 55 55 55

8b 00 ff ff 00 
00 ff ff ff 00 
00 00 00 00 ff 
ff ff ff 00 ff 
00 00 00 ff ff

ff 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00 
00 00 00 00 00

𝑝 = 2−40𝑝 = 2−20𝑝 = 2−20

00010001 10101010 11111111 00000000
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KECCAK[r = 240, c = 160, nr = 4]

• Overview
• The first stage

• Use the target internal difference algorithm (TIDA) based on previous work [DDS13, 
ZHL23, ZHL24].

• From constant starting state, produce around 232 states with symmetric capacity part.

• The second stage
• Use a new technique based on internal differential cryptanalysis.

• Produce around 249 states with symmetric capacity part and match the digest.

• The symmetric states produced by two stages all lie within a set of size 280.
• With time-memory trade-off, find collisions between two sets produced by two stages.

symmetric

4 rounds

symmetric

4 rounds matched  
by MitM
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KECCAK[r = 240, c = 160, nr = 4]

• Preliminary concepts
• Internal difference

• Period 𝑖
• Symmetric state (each lane consists of 𝑤/𝑖 repetitions of 𝑖-bit segments)
• Internal difference of a state (𝑋𝑂𝑅 the segments for each lane)

• For example, let lane size 𝑤 = 16, period 𝑖 = 4, then consider the actual value of a lane 0x1234.
• The internal difference of this lane will be 0x0325.

• Given internal difference of state 𝐴, internal difference of θ(𝐴), ρ(𝐴), π(𝐴), and ι(𝐴) can be 
directly derived with 1 probability. However, internal difference of χ(𝐴) may propagate to 
different cases according to the actual value, unless 𝐴 is a symmetric state.

• Internal differential characteristic
• Exhibits the internal difference propagating through a few rounds.
• Contains a holding probability for χ operation of each round.
• The characteristics also hold in a reversed direction because the operations are invertible.

(0001 0010 0011 0100)2

𝑖 bits 𝑖 bits 𝑖 bits 𝑖 bits

(0000 0011 0010 0101)2
⨁ ⨁ ⨁ ⨁

1⨁1 1⨁2 1⨁3 1⨁4

1 2 3 4
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KECCAK[r = 240, c = 160, nr = 4]

• The first stage
• 2.5-round internal differential characteristic

• Period 𝑖 = 8 (half of lane size 𝑤 = 16).
• Leads to symmetric (all zero internal difference) capacity part.
• Holding probability 2−10−11 = 2−21.

• TIDA [DDS13, ZHL23, ZHL24]
• Linking constant starting state and fix internal difference on Θ1.
• Difference phase

• Prepare an equation system describe internal difference on first round.
• Add equations restricting internal difference on capacity part.
• Select an affine subset for internal difference of each row on Χ1, and add equations.

• Value phase
• Enumerate every solution of equation system in the difference phase.
• Prepare another equation system describe actual value on first round.
• Add equations restricting actual value on capacity part.
• Select an affine subset for actual value of each row on Χ1, and add equations.

• Enumerate every solution of equation system in the value phase.
• Check whether 2.5-round internal differential characteristic is passed or not.

symmetric

1.5 rounds 
TIDA
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KECCAK[r = 240, c = 160, nr = 4]

• The second stage (overview)
• Determine a 1.5-round inversed internal differential characteristic (X1 → Θ0).
• Guess different internal difference after the χ operation.
• Derive the linear strategy for the 𝜒−1 operation.
• After 1.5-round, add linear restrictions on internal difference.
• Linearize some other bits (actual value).

• The strategy is determined by MILP model.

• Let the rest bits satisfied randomly.
• Compute backward and get starting state.

symmetric

4 rounds

symmetric

1.5 rounds fixed 
internal 

difference𝑝 = 1

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

ι ∘ χ

enumerate

ι ∘ χ

match

linearize
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KECCAK[r = 240, c = 160, nr = 4]

• The second stage
• Deal with χ in the second round.

• Internal difference of X1 is known according to internal differential characteristic.

• For each row, guess possible internal difference on 𝐼1. 

• Then determine the actual value. 
• The variables are selected on 𝐼1. 

• Add equations on these variables so that the restricted actual values ensure that internal 
difference of each row can be transformed backward to X1 with 1 probability.

• For non-active S-box (all zero row), no equations are required.

• For each row with 𝐷𝐷𝑇 = 8, 3 equations are required (there are two kinds of 3 equations).

• For each row with 𝐷𝐷𝑇 = 4, 3 equations are required.

• For each row with 𝐷𝐷𝑇 = 2, 4 equations are required (there is no row with 𝐷𝐷𝑇 = 2 here).

• Degrees of freedom

• There are 9 active rows → using 27 degrees of freedom

linearize

𝐼1X1

symmetric

1.5 rounds fixed 
internal 

difference𝑝 = 1

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

match
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KECCAK[r = 240, c = 160, nr = 4]

• The second stage
• linear restrictions on internal difference after 1.5 rounds

• The state 𝐼1: the internal difference is fixed constant, and the actual value is all linear.
• For each lane: high 𝑖 = 8 bits are variables, while the remaining 𝑤 − 𝑖 = 8 bits either exactly 

match these variable bits or differ by a constant 1.

• After ι, θ, ρ, and π, the internal difference is still constant and the actual value is still linear.

• After χ, the internal difference will be linear although the actual value becomes quadratic.
• Suppose three consecutive bits on two corresponding rows are 𝑥, 𝑦, 𝑧 and 𝑥⨁𝑐𝑥, 𝑦⨁𝑐𝑦 , 𝑧⨁𝑐𝑧.

• After χ, the first bits on two rows will be 𝑥⨁𝑧⨁𝑦𝑧 and (𝑥⨁𝑐𝑥)⨁(𝑧⨁𝑐𝑧)⨁(𝑦⨁𝑐𝑦)(𝑧⨁𝑐𝑧).

• Although the two bits are both quadratic, the difference (𝑐𝑥⨁𝑐𝑧⨁𝑐𝑧𝑦⨁𝑐𝑦𝑧⨁𝑐𝑦𝑐𝑧) is linear.

• After ι and θ, ρ, π of next round, the internal difference is still linear.
• Add restrictions so that the digest is matched when high 𝑖 bits on each lane were matched.

linearize

X3𝐼1

symmetric

1.5 rounds fixed 
internal 

difference𝑝 = 1

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

match

π ∘ ρ ∘ θ ∘ ι

χ

π ∘ ρ ∘ θ ∘ ι
X2 𝐼2
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KECCAK[r = 240, c = 160, nr = 4]

• The second stage
• Linearize some other bits

• Use MILP model, and similar to cryptanalysis on 𝑏 = 800.
• Spend 87 + 31 = 118 degrees of freedom restrict 31 more bits on X3.

• Complexity
• There are 400 degrees of freedom on I1.
• 200 equations are added to restrict the internal difference on I1.
• 27 equations are added to restrict the internal difference on X1 (restrict the actual value 

for 9 active rows).
• 40 equations are added to restrict the internal difference on X3.
• 87 equations are added to restrict some bits on X2 constant bits.
• 31 equations are added to restrict the corresponding required bits on X3.
• Solve linear equation system and verify the around 2400−200−27−40−87−31 = 215 solutions.
• For one try, the probability of matching the digest will be 2−(80−40−31) = 2−9.
• Collect around 249 symmetric starting states that also lead to required digest.

linearize

X3𝐼1

symmetric

1.5 rounds fixed 
internal 

difference𝑝 = 1

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

match

π ∘ ρ ∘ θ ∘ ι

χ

π ∘ ρ ∘ θ ∘ ι
X2 𝐼2
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KECCAK[r = 640, c = 160, nr = 5]

• Unsolved yet (the complexity is around 262)

• Differences from cryptanalysis on 4-round 𝑏 = 400
• Increasing the round number leads to the difficulty of the first stage.

• Instead, cancel the first stage and exploit the symmetry property of all zero IV.

• Without MitM, higher symmetry is required to reduce the complexity.
• We select period 𝑖 = 8 (𝑤 = 32, and 4 repetitions for each lane).

• Other modifications such as characteristic, linearization and so on.
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KECCAK[r = 640, c = 160, nr = 5]

• Overview
• First stage

• From given digest, generate some applicable starting states with symmetric capacity part.

• Second stage
• Generate a large number of directed edge from a symmetric capacity part to another.

• The pre-image can be found when the node representing the all zero IV becomes 
connected to any node in digest-attainable set.

symmetric

5 rounds5 rounds

symmetric symmetric

TS

𝑝 = 2−20

lead to required digestall zero IV

nodes representing all 
symmetric capacity part

digest-attainable set

second stage first stage
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KECCAK[r = 640, c = 160, nr = 5]

• The first stage
• Almost the same with the second stage.
• Only difference: 

• When matching digest, restrictions are on the first plane instead of the last plane.

• The number of restrictions are fewer.

linearizesymmetric

2.5 rounds fixed 
internal 

difference𝑝 = 2−20

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

restrict

symmetric

5 rounds5 rounds

symmetric symmetric

𝑝 = 2−20

the second stage the first stage
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KECCAK[r = 640, c = 160, nr = 5]

• The second stage
• Find the characteristic.

• The probability of passing χ operations can not be too low.
• The probability should be at least 2−20.

• The sum of numbers of active rows for first two χ should be less than 10.

• Require more non-active rows on X2 due to insufficient degrees of freedom.
• The number of degrees of freedom used for linearization of the third χ should be less than 80.

• There is no difference bit on the last plane of the starting state.
• The capacity part should be symmetric.

• We employ condition-guided search instead of using the MILP model. 
• The MILP model with basic implementation does not provide desired characteristic quickly.

• We believe the MILP model with better modeling can also find the good characteristic.

linearizesymmetric

2.5 rounds fixed 
internal 

difference𝑝 = 2−20

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

restrict
symmetric

spend less than 80
degrees of freedom

spend 120
degrees of 
freedom

200 degrees of 
freedom in totalX2
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KECCAK[r = 640, c = 160, nr = 5]

• The second stage
• The way of searching characteristic:

• Determine a start round index (𝑖𝑟 = 5 shows the best result).
• Enumerate three or four bit-pairs on Θ1 (even parity for each column).
• First prune:

• Some bits on I0 should be cancelled out by the first-round constant (I0
ι−1

Θ1).
• Second prune:

• Assume the second χ (X1→
χ
I1) can extend any additional bits on each active row.

• Then, for the most ideal case with as many even-parity columns as possible on Θ2, the number of 
required degrees of freedom on X2 should not exceed the limit.

• Third prune:

• Assume the first χ−1 (X0
χ−1

I0) can extend any additional bits on each active row.
• Then, for the most ideal case, all the columns on X0 should be even-parity columns.

• For the rare cases after pruning, enumerate all the possible propagations for each χ, and 
check whether the characteristic meet the requirements.

Θ0
θ−1∘ρ−1∘π−1

X0
χ−1

I0
ι−1

Θ1
π∘ρ∘θ

X1→
χ
I1→

ι
Θ2

π∘ρ∘θ
X2
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KECCAK[r = 640, c = 160, nr = 5]

• The second stage
• Deal with χ in the third round.

• For more complex characteristic and different ratio (
𝑤

𝑖
= 4) of lane size 𝑤 and period 𝑖, the 

linearization is similar but with minor differences.
• We should consider four rows at the same time (with stride 𝑖 = 8).

• If there is no active row:
• No equations are required.

• If there is only one active row:
• For the case of 𝐷𝐷𝑇 = 8, 3 equations are required (there are two kinds of 3 equations).

• Or 2 (or 1) equations with 0.75(or 0.5) probability.
• For the case of 𝐷𝐷𝑇 = 4, 3 equations are required.
• For the case of 𝐷𝐷𝑇 = 2, 4 equations are required.

• If there are at least two active rows:
• Enumerate all the 32 cases for actual value, and record the cases that satisfy the propagation 

for the four rows at the same time.
• If there are two available cases, 4 equations are required.
• If there is only one available case, 5 equations are required to fully determine the actual value.

linearizesymmetric

2.5 rounds fixed 
internal 

difference𝑝 = 2−20

fixed 
internal 

difference

1.5 rounds linear 
internal 

difference

χ

enumerate

ι ∘ χ

restrict
symmetric
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KECCAK[r = 640, c = 160, nr = 5]

• The second stage (supplements)
• The internal differential characteristic for the second stage.

• Require 72 equations to restrict the χ in the third round (72 + 120 < 200).

• Probability of passing the first two rounds is 2−(8+12) = 2−20 (require ~241 states).
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