

On Solving Challenges in the KECCAK Crunchy Crypto Contest

• Xiaoen Lin¹, Zhengrong Lu¹, Yantian Shen¹, Chongxu Ren¹, Hongbo Yu^{1,2,3*}

¹Department of Computer Science and Technology, Tsinghua University, Beijing, China

- ²Zhongguancun Laboratory, Beijing, China
- ³State Key Laboratory of Cryptography and Digital Economy Security, Tsinghua University, Beijing, China

May 4, 2025

Contents

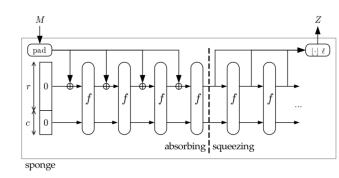
- Background
 - Keccak
 - Crunchy Contest
- Some Results
 - KECCAK[*r* = 640, *c* = 160, *n_r* = 4]
 - Based on (non) linear structures (complexity around 2⁶¹)
 - KECCAK[*r* = 40, *c* = 160, *n_r* = 2]
 - Based on (non) linear structures (complexity around 2⁶³)
 - Based on linear structures and symmetries (complexity around 249)
 - KECCAK[*r* = 240, *c* = 160, *n_r* = 4]
 - Based on internal differential cryptanalysis (complexity around 2⁵⁹)
 - KECCAK[$r = 640, c = 160, n_r = 5$] (unsolved yet)
 - Based on internal differential cryptanalysis (complexity around 2⁶²)

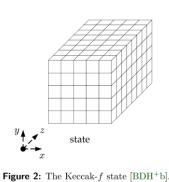
The Sunway TaihuLight supercomputer

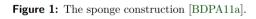
Background

- Keccak
 - Sponge construction
 - Operate on a state of b = r + c bits.
 - The state can be described as $5 \times 5 w$ -bit lanes.
 - KECCAK-f permutation
 - Consist of $12 + 2log_2(w)$ rounds.
 - 5 steps for each round.

- $\theta: A_{x,y,z} = A_{x,y,z} \oplus \bigoplus_{i=0\sim4} (A_{x-1,i,z} \oplus A_{x+1,i,z-1})$ $\rho: A_{x,y,z} = A_{x,y,(z-r_{x,y})}$ $\pi: A_{x,y,z} = A_{x+3y,x,z}$ $\chi: A_{x,y,z} = A_{x,y,z} \oplus (A_{x+1,y,z} \oplus 1) \cdot A_{x+2,y,z}$ $\iota: A_{0,0,z} = A_{0,0,z} \oplus RC_z$
- The KECCAK Crunchy Crypto Collision and Pre-image Contest
 - *b* is in {200, 400, 800, 1600}.
 - c = 160 (output size is 80-bit for pre-image)



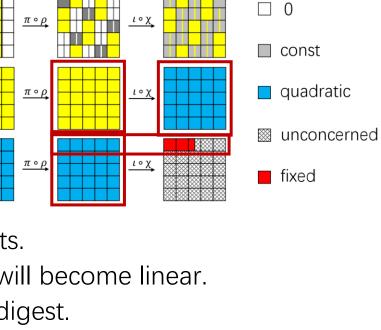




- Related previous techniques
 - linear structure [GLS16]
 - Maintain linear expressions of initial variables through rounds.
 - Enable pre-image recovery via solving linear systems repeatedly.
 - allocating approach [LS19]
 - Apply better linear structure.
 - Use two-block model with trade-off.
 - (non)linear structure [Raj19, LIMY21, WWF+21]
 - Allow quadratic bits in linear structure.
 - Solve quadratic equation systems.
 - zero coefficient [HLY21]
 - Determine column sums carefully.
 - Obtain more linear dependent bit-pairs.
 - and so on

- Overview
 Why select these 10 lanes. Why use these specific values for the column sums.
 - Select 10 lanes on θ^1 as variables.
 - Backward:
 - $[x, x, 1, x + y, 0] \stackrel{x^{-1}}{\longleftarrow} [1, x, 1, y, 0]$
 - Starting state is still linear.
 - Add equations to match capacity part.
 - Forward:
 - Add equations to control column sums on θ^1 .
 - Add equations to restrict some linear bits on X^2 constant bits.
 - Some bits on θ^3 will be linearized so that some bits on X^3 will become linear.
 - Add equations to promote the probability of matching the digest.

How to determine the first and equations for linearization?



 Θ^{ir+1}

linear

1

X^{ir}

 P^{ir}

 θ^{-1}

 Θ^{ir}

ir = 0

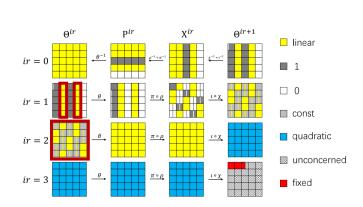
ir = 1

ir = 2

ir = 3

- Why selecting these 10 lanes on θ^1 as variables?
 - There are 5 choices.

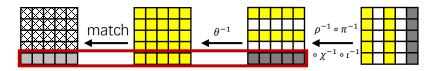
|--|



• Previous attacks on round-reduced KECCAK-224/256 select the first type.

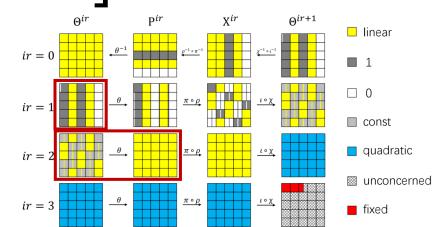
 Many ex 	ktra	ma	atch	ing) g	ains		
match			θ^{-1}			$ ho^{-1} \circ \pi^{-1}$		
						$\circ \chi^{-1} \circ \iota^{-1}$		

• Only 2¹ (for padding) extra matching gains for KECCAK[r=640, c=160].



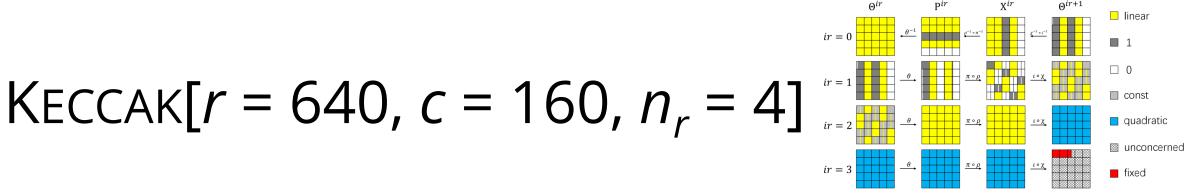
- Different choices affect the distribution of linear/constant bits on θ^2 .
 - Select the best choice for subsequent linearization according to given digest.

- The specific column sums on θ^1
 - The property for θ operation
 - $a \oplus b = const = d \oplus e$
 - $a \oplus c = const = d \oplus f$



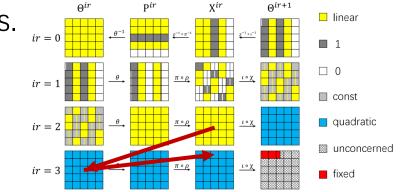
- When restrict d a constant bit, e and f will be constant simultaneously.
 - Try to make constant bits on θ^2 as many as possible.
- Use specific column sums on θ^1 so that there are 3 constant bits for most rows on θ^2 .
 - $[x, 0, y, 0, 1] \xrightarrow{x} [x + y, 0, y + 1, 0, 1]$
 - Accordingly, there are 3 constant bits for most columns on θ^2

• Restrict less bits on X^2 and linearize more bits on θ^3 .



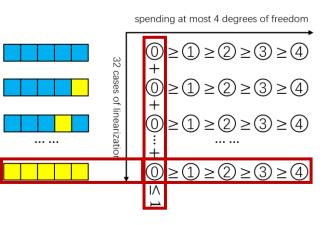
- How to determine the strategy of linearizing the last two rounds?
 - The linearization
 - Remain 320 63 1 158 = 98 degrees of freedom on X^2 .
 - 63 for column sums on θ^1 (-1 because inherent linear dependence)
 - 1 for padding rule
 - 158 for matching starting state (-1 because inherent linear dependence, another -1 because two capacity candidates)
 - Spend some to restrict some linear bits on X^2 constant bits.
 - Every equation can restrict three bits on X^2 constant bits.
 - Some bits on X^3 can be linearized.
 - Every constant bit on X^2 will linearize two bits on θ^3 .
 - Every specific 11 linearized bits on θ^3 will linearize a bit on X^3 .
 - Equations can be added on X^3 to promote probability of digest matching.
 - Precompute a table of optimal matching probabilities under various conditions.
 - MILP model.

- Details of MILP model (first part, linearize last two rounds)
 - Use 800 + 800 + 160 = 1760 Boolean variables.
 - Whether add an equation on $X_{x,y,z}^2$.
 - Whether the bit $\theta_{x,y,z}^3$ is linearized.
 - Whether the bit $X_{x,0,z}^3$ is linearized.
 - Add 800 equations for θ^3 .



- For example, $a_{\Theta_{4,0,0}^3} \le a_{X_{0,0,0}^2} + a_{X_{1,0,0}^2} + a_{X_{4,2,18}^2} + a_{X_{3,4,9}^2} + a_{X_{3,1,1}^2} + a_{X_{2,3,30}^2}$ means: $\theta_{4,0,0}^3$ will be linearized when an equation is added to restrict any of these six bits on X^2 .
- Add $11 \times 160 = 1760$ equations for X^3 .
 - For example, $\frac{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{0,0,0}^{a}}}{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{1,2,31}^{a}}} \frac{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{1,2,31}^{a}}}{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{1,2,31}^{a}}} \frac{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{1,2,31}^{a}}}{a_{X_{0,0,0}^{a}} \leq a_{\Theta_{1,2,31}^{a}}} }$ means: $X_{0,0,0}^{3}$ will be linearized when the 11 bits on θ^{3} are all linearized.

- Details of MILP model (second part, modeling an S-box (a row))
 - Use $32 \times 5 = 160$ Boolean variables (for z^{th} row).
 - Transform to 32 cases. For example:
 - Case $22 = (10110)_2$ means 2^{nd} , 3^{rd} , and 5^{th} bits are linearized.
 - 5 variables for each case.
 - The first k variables are 1 means adding (k-1) equations.
 - Add an equation: $\sum_{i=0\sim 31} a_{i,0}^z \leq 1$
 - The linearization circumstance must belong to only one case.
 - For each case (32 cases in total):
 - Add at most 5 equations (Case $22 = (10110)_2$ for example):
 - May belong to case 22 when the three bits on X^3 are all linearized. $a_{22,0}^z \leq a_{X_{4,0,z}^3}$
 - Add 4 equations: $a_{i,1}^z \le a_{i,0}^z$ $a_{i,2}^z \le a_{i,1}^z$ $a_{i,3}^z \le a_{i,2}^z$ $a_{i,4}^z \le a_{i,3}^z$
 - The restrictions will be added one by one.

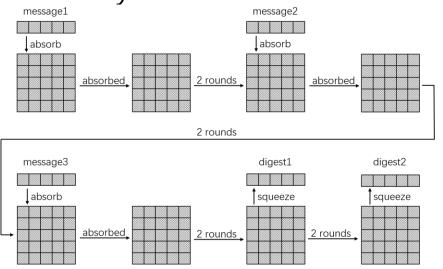


 $a_{22,0}^{z} \le a_{X_{1,0,z}^{3}}$ $a_{22,0}^{z} \le a_{X_{2,0,z}^{3}}$

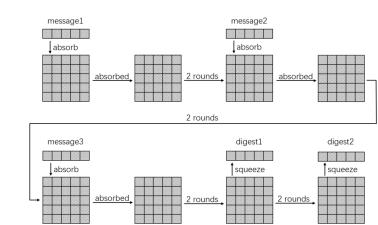
- Details of MILP model (third part, global constraint and objective)
 - Add an equation: $(\Sigma_{x=0\sim4,y=0\sim4,z=0\sim31}a_{X^2_{x,y,z}}) + (\Sigma_{i=0\sim31,j=0\sim4,z=0\sim31}a^z_{i,j}) + 8 \le 98$
 - The number of used degrees of freedom is limited by 98.
 - Leave around 7 degrees of freedom because quadratic equation system with 34 equations on 7 variables can be solved linearly.
 - Leaving one more degree of freedom does not affect the result of MILP model while it speeds up the solving time.
 - The objective: $Maximizing: \Sigma_{z=0\sim31,i=0\sim31,j=1\sim4}(log_2(p_{z,i,j}/p_{z,i,j-1}) \times a_{i,j}^z)$
 - The gain (probability calculated by log_2) of adding one more equation (when $a_{i,j}^z = 1$).
 - $p_{z,i,j}$ is a precomputed table recording the best probability under following conditions:
 - z^{th} row
 - i^{th} case of linearization (which bits on X^3 are linearized and can be controlled)
 - *j* added equations

- Complexity
 - There are 320 variables on θ^1 .
 - Add 158 equations to match one of capacity parts. One more for padding.
 - Add 63 equations to control column sums on θ^1 .
 - Add 71 equations to restrict some linear bits on X^2 constant bits.
 - 19 bits on X^3 will become linear.
 - Add 19 equations to promote the probability of matching the digest.
 - Bring gains of $\sim 2^{16.5}$
 - Solve quadratic equation systems with 34 quadratic equations on 8 variables.
 - Try $\sim 2^{56.5}$ different guesses for 71 equations on X^2 .
 - It is expected to have one solution.

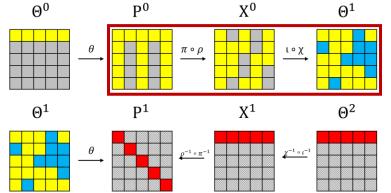
- First method (earlier attempt)
 - By solving quadratic equation systems.
 - Reduce the number of quadratic terms.
 - Although the complexity is relatively high, it is independent of round constants.
- Second method
 - Based on combination of linear structures and symmetries.
 - Round constant is zero for ir = 3.
 - Solve in backward direction.



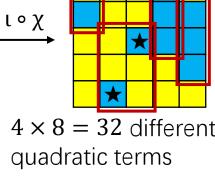
- Overview of the first method
 - Solve the first 40-bit.
 - Let the remaining 40-bit digest matched randomly.
- Use quadratic structure and solve equation systems
 - Leave as many degrees of freedom as possible.
 - Produce as few quadratic terms as possible.



- The quadratic structure
 - $5 \times 8 1 = 39$ variables on θ^0
 - $2 \times 8 = 16$ equations restricting column sums
 - Rest 23 degrees of freedom.
 - 40 equations for (first 40-bit) digest matching
 - 8 linear equations, and 32 quadratic equations
 - Guess four more bits to solve the quadratic equation system linearly.
 - Rest around 19 degrees of freedom, and require guessing around 2^{21} times for matching the first 40-bit digest.
 - Randomly match the rest 40-bit digest.



 $\pi \circ \rho$



Randomly matched

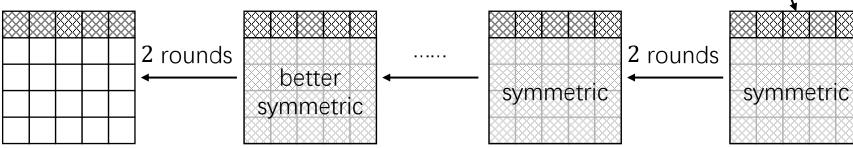
2 rounds

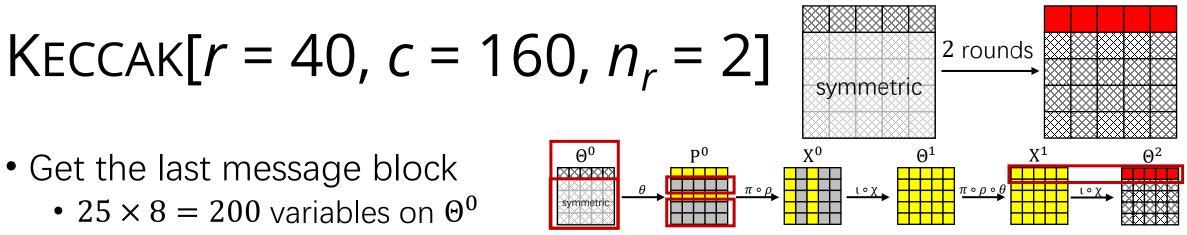
2 rounds

symmetric

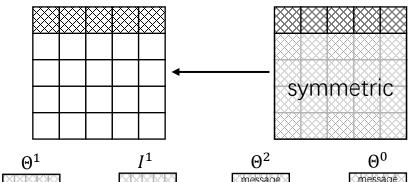
КЕССАК[*r* = 40, *c* = 160, *n_r* = 2]

- Overview of the second method
 - Use linear structure produce the last block:
 - Capacity part of starting state is symmetric.
 - Match the first 40-bit digest with 1 probability.
 - Repeat 2⁴⁰ times, and match the whole digest.
 - Try different symmetric message blocks and compute backward.
 - Match the all zero *IV*.





- Each lane on the capacity part of Θ^0 is symmetric (e.g. 0x11).
 - Add $20 \times 4 = 80$ equations.
- The bits on 2^{nd} , 4^{th} , and 5^{th} planes of P^0 are constant bits.
 - Add $15 \times 8 = 120$ equations.
- Match the first 40-bit digest on Θ^2 .
 - Add 40 equations.
- 41 equations among them are linear-dependent.
 - The number of degrees of freedom is enough.
- Try different constant settings on P^0 , until the last 40-bit digest satisfied.



symmetric

absorb

symmetric message

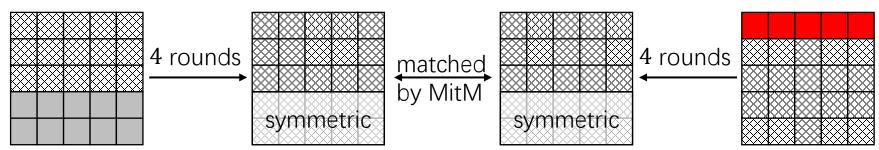
- The backward process
 - Start from a symmetric capacity.
 - Select different message blocks, so that the state is symmetric before inverse ι.

symmetric $e^{\rho^{-1} \circ \rho^{-1}}_{\circ \pi^{-1} \circ \chi^{-1}}$ symmetric $rc^3 = 0$ symmetric $e^{\rho^{-1} \circ \rho^{-1}}_{\circ \pi^{-1} \circ \chi^{-1}}$

- For the property of $\theta^{-1} \circ \rho^{-1} \circ \pi^{-1} \circ \chi^{-1}$ operations, state stays symmetric.
- Select the start round index ir = 3, where the round constant is zero for the first round $(rc^{ir=3} = 0)$. The property of symmetry will always hold.
- The property of symmetry may be better and better.

• period i = 4 to period i = 2 to period i = 1 to all 0 (e.g. $0x11 \rightarrow 0xaa \rightarrow 0xff \rightarrow 0x00)$.

- Overview
 - The first stage
 - Use the target internal difference algorithm (TIDA) based on previous work [DDS13, ZHL23, ZHL24].
 - From constant starting state, produce around 2^{32} states with symmetric capacity part.
 - The second stage
 - Use a new technique based on internal differential cryptanalysis.
 - Produce around 2⁴⁹ states with symmetric capacity part and match the digest.
 - The symmetric states produced by two stages all lie within a set of size 2^{80} .
 - With time-memory trade-off, find collisions between two sets produced by two stages.



- Preliminary concepts
 - Internal difference
 - Period *i*
 - Symmetric state (each lane consists of w/i repetitions of *i*-bit segments)
 - Internal difference of a state (XOR the segments for each lane)
 - For example, let lane size w = 16, period i = 4, then consider the actual value of a lane 0x1234.
 - The internal difference of this lane will be 0x0325.
 - Given internal difference of state A, internal difference of $\theta(A)$, $\rho(A)$, $\pi(A)$, and $\iota(A)$ can be directly derived with 1 probability. However, internal difference of $\chi(A)$ may propagate to different cases according to the actual value, unless A is a symmetric state.
 - Internal differential characteristic
 - Exhibits the internal difference propagating through a few rounds.
 - Contains a holding probability for $\boldsymbol{\chi}$ operation of each round.
 - The characteristics also hold in a reversed direction because the operations are invertible.

 $1 \oplus 1 \quad 1 \oplus 2 \quad 1 \oplus 3 \quad 1 \oplus 4$

 $(0000\ 0011\ 0010\ 0101)_2$

i bits *i* bits *i* bits *i* bits

 $(0001\ 0010\ 0011\ 0100)_2$

 \oplus

2

 \oplus

 \oplus

 \oplus

4

1.5 rounds

TIDA

• The first stage

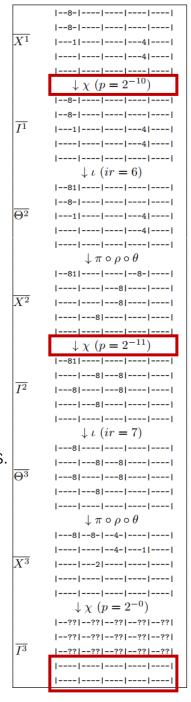
- 2.5-round internal differential characteristic
 - Period i = 8 (half of lane size w = 16).
 - Leads to symmetric (all zero internal difference) capacity part.
 - Holding probability $2^{-10-11} = 2^{-21}$.
- TIDA [DDS13, ZHL23, ZHL24]
 - Linking constant starting state and fix internal difference on Θ^1 .
 - Difference phase
 - Prepare an equation system describe internal difference on first round.
 - Add equations restricting internal difference on capacity part.
 - Select an affine subset for internal difference of each row on X^1 , and add equations.

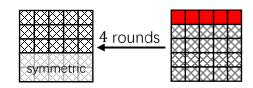
2.5 rounds

characteristic

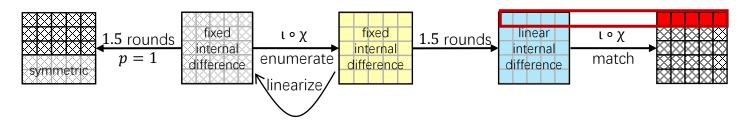
symmetri

- Value phase
 - Enumerate every solution of equation system in the difference phase.
 - Prepare another equation system describe actual value on first round.
 - Add equations restricting actual value on capacity part.
 - Select an affine subset for actual value of each row on X¹, and add equations.
- Enumerate every solution of equation system in the value phase.
 - Check whether 2.5-round internal differential characteristic is passed or not.





- The second stage (overview)
 - Determine a 1.5-round inversed internal differential characteristic $(X^1 \rightarrow \Theta^0)$.
 - Guess different internal difference after the χ operation.
 - Derive the linear strategy for the χ^{-1} operation.
 - After 1.5-round, add linear restrictions on internal difference.
 - Linearize some other bits (actual value).
 - The strategy is determined by MILP model.
 - Let the rest bits satisfied randomly.
 - Compute backward and get starting state.



- The second stage
 - Deal with χ in the second round.
 - Internal difference of X¹ is known according to internal differential characteristic.

1.5 rounds

p = 1

- For each row, guess possible internal difference on I^1 .
- Then determine the actual value.
 - The variables are selected on I^1 .
 - Add equations on these variables so that the restricted actual values ensure that internal difference of each row can be transformed backward to X^1 with 1 probability.
 - For non-active S-box (all zero row), no equations are required.
 - For each row with DDT = 8, 3 equations are required (there are two kinds of 3 equations).

 X^1

fixed

internal

difference

enumerate

Ninearize

fixed

internal

difference

linear

internal

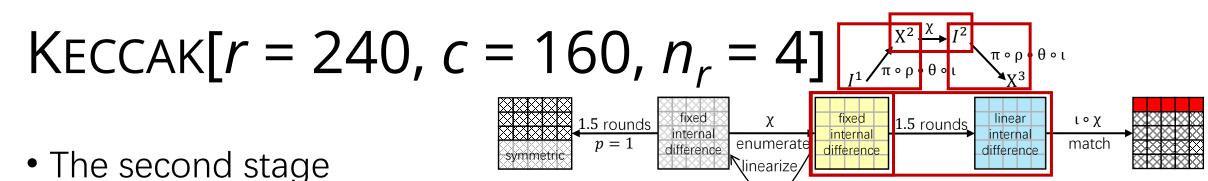
difference

ιοχ

match

1.5 rounds

- For each row with DDT = 4, 3 equations are required.
- For each row with DDT = 2, 4 equations are required (there is no row with DDT = 2 here).
- Degrees of freedom
 - There are 9 active rows \rightarrow using 27 degrees of freedom



- linear restrictions on internal difference after 1.5 rounds
 - The state I^1 : the internal difference is fixed constant, and the actual value is all linear.
 - For each lane: high i = 8 bits are variables, while the remaining w i = 8 bits either exactly match these variable bits or differ by a constant 1.
 - After ι , θ , ρ , and π , the internal difference is still constant and the actual value is still linear.
 - After χ , the internal difference will be linear although the actual value becomes quadratic.
 - Suppose three consecutive bits on two corresponding rows are x, y, z and $x \oplus c_x, y \oplus c_y, z \oplus c_z$.
 - After χ , the first bits on two rows will be $x \oplus z \oplus yz$ and $(x \oplus c_x) \oplus (z \oplus c_z) \oplus (y \oplus c_y)(z \oplus c_z)$.
 - Although the two bits are both quadratic, the difference $(c_x \oplus c_z \oplus c_z y \oplus c_y z \oplus c_y c_z)$ is linear.
 - After ι and $\theta,\,\rho,\,\pi$ of next round, the internal difference is still linear.
 - Add restrictions so that the digest is matched when high *i* bits on each lane were matched.

KECCAK[$r = 240, c = 160, n_r = 4$]

- The second stage
 - Linearize some other bits
 - Use MILP model, and similar to cryptanalysis on b = 800.
 - Spend 87 + 31 = 118 degrees of freedom restrict 31 more bits on X^3 .
 - Complexity
 - There are 400 degrees of freedom on I^1 .
 - 200 equations are added to restrict the internal difference on I¹.
 - 27 equations are added to restrict the internal difference on X¹ (restrict the actual value for 9 active rows).

1.5 rounds

p = 1

fixed

internal

difference

fixed

internal

difference

enumerate

linearize

1.5 rounds

- 40 equations are added to restrict the internal difference on X^3 .
- 87 equations are added to restrict some bits on X^2 constant bits.
- 31 equations are added to restrict the corresponding required bits on X^3 .
- Solve linear equation system and verify the around $2^{400-200-27-40-87-31} = 2^{15}$ solutions.
- For one try, the probability of matching the digest will be $2^{-(80-40-31)} = 2^{-9}$.
- Collect around 2⁴⁹ symmetric starting states that also lead to required digest.

ποροθοι

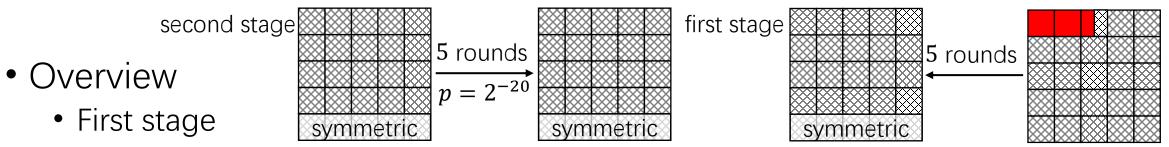
internal

difference

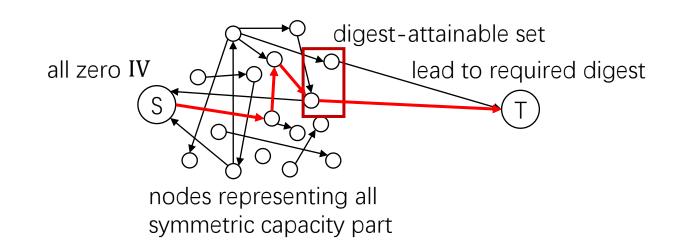
ιοχ

match

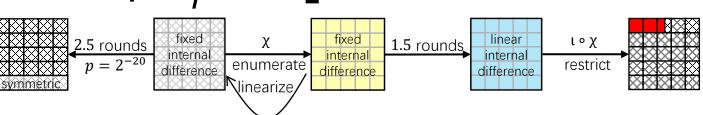
- Unsolved yet (the complexity is around 2^{62})
- Differences from cryptanalysis on 4-round b = 400
 - Increasing the round number leads to the difficulty of the first stage.
 - Instead, cancel the first stage and exploit the symmetry property of all zero IV.
 - Without MitM, higher symmetry is required to reduce the complexity.
 - We select period i = 8 (w = 32, and 4 repetitions for each lane).
 - Other modifications such as characteristic, linearization and so on.



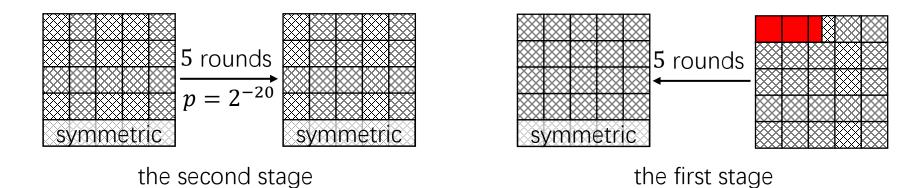
- From given digest, generate some applicable starting states with symmetric capacity part.
- Second stage
 - Generate a large number of directed edge from a symmetric capacity part to another.
 - The pre-image can be found when the node representing the all zero IV becomes connected to any node in digest-attainable set.



• The first stage



- Almost the same with the second stage.
- Only difference:
 - When matching digest, restrictions are on the first plane instead of the last plane.
 - The number of restrictions are fewer.



KECCAK[$r = 640, c = 160, n_r = 5$]

- The second stage
 - Find the characteristic.
 - The probability of passing χ operations can not be too low.
 - The probability should be at least 2^{-20} .
 - The sum of numbers of active rows for first two χ should be less than 10.
 - Require more non-active rows on X^2 due to insufficient degrees of freedom.
 - The number of degrees of freedom used for linearization of the third χ should be less than 80.

fixed

internal

difference

2.5 rounds

freedom in total

fixed

internal

difference

enumerate

linearize.

spendNess/than 80

linear

internal

difference

1.5 rounds

ιοχ

restrict

degrees of

freedom

spend 120 symmetric

- There is no difference bit on the last plane of the starting state.
 - The capacity part should be symmetric.
- We employ condition-guided search instead of using the MILP model.
 - The MILP model with basic implementation does not provide desired characteristic quickly.
 - We believe the MILP model with better modeling can also find the good characteristic.

• The second stage

$$\Theta^{0} \xleftarrow{\theta^{-1} \circ \rho^{-1} \circ \pi^{-1}} X^{0} \xleftarrow{\chi^{-1}} I^{0} \xleftarrow{\iota^{-1}} \Theta^{1} \xrightarrow{\pi \circ \rho \circ \theta} X^{1} \xrightarrow{\chi} I^{1} \xrightarrow{\iota} \Theta^{2} \xrightarrow{\pi \circ \rho \circ \theta} X^{2}$$

- The way of searching characteristic:
 - Determine a start round index (ir = 5 shows the best result).
 - Enumerate three or four bit-pairs on Θ^1 (even parity for each column).
 - First prune:
 - Some bits on I⁰ should be cancelled out by the first-round constant ($I^0 \stackrel{\iota^{-1}}{\leftarrow} \Theta^1$).
 - Second prune:
 - Assume the second χ ($X^1 \xrightarrow{\chi} I^1$) can extend any additional bits on each active row.
 - Then, for the most ideal case with as many even-parity columns as possible on Θ^2 , the number of required degrees of freedom on X^2 should not exceed the limit.
 - Third prune:
 - Assume the first χ^{-1} ($X^0 \xleftarrow{\chi^{-1}} I^0$) can extend any additional bits on each active row.
 - Then, for the most ideal case, all the columns on X⁰ should be even-parity columns.
 - For the rare cases after pruning, enumerate all the possible propagations for each χ , and check whether the characteristic meet the requirements.

- The second stage
 - Deal with $\boldsymbol{\chi}$ in the third round.
 - For more complex characteristic and different ratio $(\frac{w}{i} = 4)$ of lane size w and period i, the linearization is similar but with minor differences.

2.5 rounds

 $p = 2^{-20}$

fixed

internal

difference

- We should consider four rows at the same time (with stride i = 8).
 - If there is no active row:
 - No equations are required.
 - If there is only one active row:
 - For the case of DDT = 8, 3 equations are required (there are two kinds of 3 equations).
 - Or 2 (or 1) equations with 0.75(or 0.5) probability.
 - For the case of DDT = 4, 3 equations are required.
 - For the case of DDT = 2, 4 equations are required.
 - If there are at least two active rows:
 - Enumerate all the 32 cases for actual value, and record the cases that satisfy the propagation for the four rows at the same time.
 - If there are two available cases, 4 equations are required.
 - If there is only one available case, 5 equations are required to fully determine the actual value.

linear

internal

difference

1.5 rounds

fixed

internal

difference

enumerate

linearize

ιογ

restrict

• The second stage (supplements)

- The internal differential characteristic for the second stage.
 - Require 72 equations to restrict the χ in the third round (72 + 120 < 200).
 - Probability of passing the first two rounds is $2^{-(8+12)} = 2^{-20}$ (require $\sim 2^{41}$ states).

|-----|-----|-----2|------|-----2-| |-----|-----|-----|-----| $\overline{\Theta^0}$ |-----|-----|-----2|------|-----2-| |-----|----|-----|-----| |-----|----|-----|-----|-----| $\uparrow \theta^{-1} \circ \rho^{-1} \circ \pi^{-1}$ |-----|----|----|----|----|-----| |-----|-----|-----|-----|-----| $\overline{X^0}$ |-----|----|-----|-----|-----| |-----|----|-----|-----| |--8-8-8-|-----|----1---|-----|-----| $\uparrow \chi^{-1} \ (p = 2^{-8})$ |-----|----|----|----|----|-----| |-----|----|-----|-----| $\overline{I0}$ |-----|----|-----|-----| |-----|----|-----|-----|-----|

 $\uparrow \iota^{-1} (ir = 6)$ $\downarrow ----8-8- \downarrow -----1 \downarrow -----2-- \downarrow -----2-- \downarrow \\ \downarrow ------1 \downarrow ------1 \downarrow ------1 \downarrow ------1 \downarrow ------1 \\ \downarrow -----4- \downarrow -----1 \downarrow -------1 \downarrow ------1 \\ \uparrow \theta^{-1} \circ \rho^{-1} \circ \pi^{-1}$

 $\overline{\Theta^2}$

 $\overline{X^2}$

|---2828-|----8-8|-----|--c-c-4-|---24242| |---4-6-|--b-b-a-|--1-1--|----1-1-|----4-| |---1-1--|----8-c|---8-1-1|--18181-| |-----848|--2-2---|-----2-2|-------|----4-4| |------|----2-2|--8581-1|----4-4|---2-2--|

31/31

References

- [BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Crypto-graphic sponge functions, 2011. http://sponge.noekeon.org/CSF-0.1.pdf.
- [BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. The keccak-f state. https://keccak.team/figures.html.
- [GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to cryptanalysis of round-reduced Keccak. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages249–274. Springer, Berlin, Heidelberg, December 2016. https://doi.org/10.1007/978-3-662-53887-6_9.
- [LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced Keccak-224/256via an allocating approach. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 556–584. Springer, Cham, May 2019. https://doi.org/10.1007/978-3-030-17659-4_19.
- [Raj19] Mahesh Sreekumar Rajasree. Cryptanalysis of round-reduced KECCAK using non-linear structures. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors, INDOCRYPT 2019, volume 11898 of LNCS, pages 175–192. Springer, Cham, December 2019. https://doi.org/10.1007/978-3-030-35423-7_9.
- [LIMY21] Fukang Liu, Takanori Isobe, Willi Meier, and Zhonghao Yang. Algebraic attacks on round-reduced Keccak. In Joonsang Baek and Sushmita Ruj, editors, ACISP 21, volume 13083 of LNCS, pages 91–110. Springer, Cham, December 2021. https://doi.org/10.1007/978-3-030-90567-5_5.
- [WWF+21] Congming Wei, Chenhao Wu, Ximing Fu, Xiaoyang Dong, Kai He, JueHong, and Xiaoyun Wang. Preimage attacks on 4-round keccak by solving multivariate quadratic systems. In Jong Hwan Park and Seung-Hyun Seo, editors, ICISC 21, volume 13218 of LNCS, pages 195–216. Springer, Cham, December 2021. https://doi.org/10.1007/978-3-031-08896-4_10.
- [HLY21] Le He, Xiaoen Lin, and Hongbo Yu. Improved preimage attacks on 4-roundKeccak-224/256.IACR Trans. Symm. Cryptol., 2021(1):217–238, 2021. https://doi.org/10.46586/tosc.v2021.i1.217-238.
- [DDS13] Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials. In: Moriai, S. (eds) Fast Software Encryption. FSE 2013, LNCS vol. 8424, pp. 219–240. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-662-43933-3_12
- [ZHL23] Zhang, Z., Hou, C., Liu, M.: Collision Attacks on Round-Reduced SHA-3 Using Conditional Internal Differentials. In: Hazay, C., Stam, M. (eds) Advances in Cryptology EUROCRYPT 2023, LNCS vol 14007, pp. 220–251. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_8
- [ZHL24] Zhang, Z., Hou, C., Liu, M.: Probabilistic Linearization: Internal Differential Collisions in up to 6 Rounds of SHA-3. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology CRYPTO 2024, LNCS, vol 14923, pp. 241–272. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-68385-5_8

THANK YOU!