

Lumora: A family of permutation based wide-block ciphers for PQC zkSNARK applications

Susanta Samanta and Guang Gong

Department of Electrical and Computer Engineering University of Waterloo CANADA https://uwaterloo.ca/scholar/ggong

> Permutation-based Crypto 2025 May 4, 2025

Outline

- Motivation from practical MPC, zkSNARKs, and FHE requirements
- Lumora: a family of permutation based wide-block ciphers
- Concluding remarks

Motivation

Current applications, listed below, request minimized multiplication depth in their underline symmetric-key algorithms toward to be practical.

- Multi-party computation (MPC),
- zero-knowledge Succinct Noninteractive Argument of Knowledge (zkSNARK) proofs, and
- fully homomorphic encryption (FHE).

Motivation (cont.)

- In zkSNARK schemes for Rank-1 Constraint Satisfaction (R1CS), the prover/verifier's complexity only depends
 - on the number of multiplication gates in a fan-in two circuit,
 - the size of the underlying finite field is not so relevant or it can be easily satisfied that condition without increasing the complexity.
- Examples include Stark (2018), Aurora (2019), Fractal (2019) Polaris (2022), Sparrow (2024), etc..
- zkSNARK-friendly ciphers aim to minimize multiplicative complexity (e.g., MiMC).
- According to the constraint system, the inverse function over a finite field \mathbb{F}_{2^n} only counts as one constraint, however, it has degree n 1! This motivates our choice for nonlinear S-box operations.

MiMC 1

• MiMC-n/n. A block cipher, defined over $\mathbb{F}_q = GF(q), q = 2^n$ or q = p a prime.

• Let $x, k \in \mathbb{F}_q$. The round function of MiMC-n/n is as follows:

$$f(x) = x^3$$
, more general $f(x) = x^d$, $gcd(d, q - 1)$
 $f_i(x) = f(x + k + t_i), t_i \in \mathbb{F}_q, i = 0, \cdots, r - 1, t_0 = 0,$ (1)

The encryption function is iterated f_i r times.

¹M. Albrecht+. MiMC: Efficient encryption and cryptographic hashing with minimal multiplicative complexity. Advances in Cryptology - ASIACRYPT 2016.

Two instantiations

HadesMiMC²

AES like structure:

Add the subkey
An Sbox over 𝑘_p
Mix affine layer: a *I* × *I* maximum distance separable (MDS) matrix over 𝑘_p

• The *i*th round function is defined as

 $G_i(x) = MF_i(x), F_i(x) = F(x+k_i) \in \mathbb{F}_p^l, x, k_i \in \mathbb{F}_p^l, i = 0, 1, \cdots, r-1,$

where k_i is a round key generated by a key scheduling algorithm.

• Parameters: $m = \lfloor \log p \rfloor = 255$, n = lm-bit plaintext block and key block, l = 3, 5.

²L. Grassi+. On a generalization of substitution-permutation networks: The HADES design strategy. Advances in Cryptology - EUROCRYPT 2020.

Poseidon ³

- an instantiation of HadesMiMC hash using the sponge structure.
- Tailored for Groth16 zkSNARK with BLS12-381, BN254, Ed25519 curves for trusted set-up.

 $^{^{3}\}mbox{L.Grassi}+.$ Poseidon: A new hash function for Zero-Knowledge proof systems. USENIX Security 21.

What other ciphers with large internal states?

- Keccak-1600⁴
 - Large 1600-bit internal state
 - Suited for 64-bit parallelism
 - Not clear if it can be converted to a permutation over $\mathbb{F}_{2^{64}}$ with MiMC.
- Snow V⁵
 - Finite stata based structure with **1024-bit state**, 32-bit registers.
 - ► It uses two LFSRs with degree 16 over 𝔽₂₃₂ with the full AES-128 as a round function.
 - So, the **block size** for nonlinear permutation is actually to work on \mathbb{F}_{2^8} .
 - Thus, it is unknown whether this structure can be made MiMC.

⁴G. Bertoni+. The KECCAK reference. 2011

https://keccak.team/files/Keccak-reference-3.0.pdf.

⁵P. Ekdahl+. A new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric Cryptology, 2019.

Lumora

- Lumora is a family of permutation based wide-block ciphers.
- It adopts the AES-like structures: the round function is composed of SubCell, MixColumns operation and the ShiftRows operation.
- Each instantiation follows a unified structure; only the block size varies, defined over the binary extension field F_{2ⁿ}, with n ∈ {16, 32, 64}
- We denote each cipher in the family as Lumora(16*n*, *n*), where 16*n* represents the block size, and *n* indicates the size of the underlying finite field \mathbb{F}_{2^n}

Design Specification

- Each encryption round of a **Lumora** cipher is composed of three different transformations in the following order:
 - a nonlinear transformation η ,
 - a linear transformation ℓ , and
 - a cell permutation π

Lumora (cont.)

- The cipher receives a 16*n*-bit plaintext P = b₀b₁b₂ ··· b_{16n-2}b_{16n-1} as the cipher state I, where b₀ is the most significant bit.
- The cipher state can also be expressed as sixteen *n*-bit (here n = 16, 32, 64) cells as

$$I = \begin{bmatrix} s_0 & s_4 & s_8 & s_{12} \\ s_1 & s_5 & s_9 & s_{13} \\ s_2 & s_6 & s_{10} & s_{14} \\ s_3 & s_7 & s_{11} & s_{15} \end{bmatrix}, \ s_i \in \mathbb{F}_{2^n}$$

Design Specifications: The SubCell transformation η

• This is a nonlinear transformation in which an Sbox $S : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is applied to each cell of the cipher internal state

$$s_i \leftarrow S(s_i)$$
 for $i = 0, 1, \ldots, 15$

s_0	84	88	812
s_1	85	89	s_{13}
82	86	810	814
83	87	811	815

$S(s_0)$	$S(s_4)$	$S(s_8)$	$S(s_{12})$
$S(s_1)$	$S(s_5)$	$S(s_9)$	$S(s_{13})$
$S(s_2)$	$S(s_6)$	$S(s_{10})$	$S(s_{14})$
$S(s_3)$	$S(s_7)$	$S(s_{11})$	$S(s_{15})$

- The Sbox S is defined as S(X) = L(Y) + b
 - $Y = X^{-1}$ is the multiplicative inverse of X in \mathbb{F}_{2^n} (with Y = 0 when X = 0).
 - ► L is a linearized polynomial over the finite field F_{2ⁿ}, which is also a permutation.
 - ▶ b is a nonzero element in 𝔽_{2ⁿ}.

Unified structure of the linearized polynomial L

• Consider the block matrix

$$M_L = \begin{bmatrix} \mathbf{0}_m & \mathbf{0}_m & \mathbf{I}_m & \mathbf{I}_m \\ \mathbf{I}_m & \mathbf{0}_m & \mathbf{0}_m & \mathbf{0}_m \\ \mathbf{I}_m & \mathbf{I}_m & \mathbf{0}_m & \mathbf{0}_m \\ \mathbf{0}_m & \mathbf{0}_m & \mathbf{i}_m & \mathbf{0}_m \end{bmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix} \otimes I_m$$

where $\mathbf{0}_m$ denotes the $m \times m$ zero matrix, and \mathbf{I}_m is the $m \times m$ identity matrix, with $m = \frac{n}{4}$

• That is, M_L is an $n \times n$ binary matrix.

The linearized polynomial L

The linearized polynomial L over \mathbb{F}_{2^n} is defined as the linearized polynomial corresponding to the binary matrix M_L

Theorem⁶ Given matrix M and a basis \mathbf{e} , the coefficient $\ell^{(t)}$ are given by

$$\ell^{(t)} = \sum_{i=1}^{n} \sum_{j=1}^{n} M_{ij} d[j]^{2^{t}} e[i],$$

where **d** is the dual basis of **e**.

⁶Joan Daemen and Vincent Rijmen (2002). The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer.

The linearized polynomial L

- Note: In the Lumora family, the underlying finite field is \mathbb{F}_{2^n} , where $n \in \{16, 32, 64\}$.
- For these values of *n*, all coefficients of the linearized polynomial *L* are nonzero.
- Moreover, none of the coefficients of *L* are equal to α, the root of the primitive polynomial that defines the field F_{2ⁿ}.
- We choose $b = \alpha$.

Design Specifications: The MixColumn transformation ℓ

- This is a linear operation that operates separately on each of the four columns of the state
 - It uses a 4×4 MDS matrix *M*. We have

$$(s_i, s_{i+1}, s_{i+2}, s_{i+3})^t \leftarrow M \cdot (s_i, s_{i+1}, s_{i+2}, s_{i+3})^t$$
 for $i = 0, 4, 8, 12$.

<i>b</i> 0	b_1	b_2	b3					
s_0	s_4	s_8	s_{12}	M				
s_1	<i>s</i> 5	89	s ₁₃		$M \cdot b_0$	$M \cdot b_1$	$M \cdot b_2$	$M \cdot b_3$
82	<i>s</i> ₆	s_{10}	s ₁₄					
83	87	811	s_{15}					

Unified structure of the matrix M

• The matrix M is given as the product of the following 4 sparse matrices M_1, M_2, M_3 and M_4 of order 4 i.e. $M = M_1 M_2 M_3 M_4$, where

$$M_1 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 0 & 1 & \alpha \\ 1 & 0 & 0 & 0 \\ \alpha^{-1} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ \alpha^{-1} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_4 = M_1,$$

where α is a nonzero element in the field \mathbb{F}_{2^n}

The matrix

$$M = \begin{bmatrix} \alpha^{-1} + 1 & \alpha^{-1} & 1 & \alpha^{-1} + 1 \\ \alpha + 1 & \alpha & \alpha^{-1} & \alpha^{-1} \\ \alpha & \alpha + 1 & \alpha^{-1} + 1 & \alpha^{-1} \\ \alpha^{-1} & \alpha^{-1} & \alpha^{-1} + 1 & 1 \end{bmatrix}$$

• The irreducible factors appearing in the minors of *M* form the set

$$\{\alpha,\alpha+1,\alpha^2+\alpha+1,\alpha^3+\alpha+1,\alpha^3+\alpha^2+1\}$$

• Hence, if α is chosen as a root of a primitive polynomial that defines the field \mathbb{F}_{2^n} , where $n \in \{16, 32, 64\}$, then M is an MDS matrix.

The MixColumns in Lumora (16n, n)

٩

$$M_1 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_2 = \begin{bmatrix} 0 & 0 & 1 & \alpha \\ 1 & 0 & 0 & 0 \\ \alpha^{-1} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, M_3 = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ \alpha^{-1} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad M_4 = M_1,$$

where α is a root of the primitive polynomial that defines the underlying field \mathbb{F}_{2^n} of Lumora(16n, n)

 In the MixColumns operation, the matrix multiplication is performed sequentially; that is,

$$M \cdot \hat{b} = M_1 \cdot (M_2 \cdot (M_3 \cdot (M_4 \cdot \hat{b}))).$$

Thus, we need only three multiplication over the finite field

Design Specifications: The ShiftRows operation $\boldsymbol{\pi}$

• It rotates row *i* of the array state *i* cell positions to the right for i = 0, 1, 2, 3. More specifically, we have $s_i \leftarrow s_{(13.i \mod 16)}$ for i = 0, 1, ..., 15

8 ₀	s_4	88	812
81	85	89	813
82	86	810	814
83	87	s_{11}	s ₁₅

s_0	s_4	s_8	s_{12}
813	81	85	89
810	814	82	86
87	811	8 ₁₅	83

Word Operation of **Lumora**(16n, n)

• Note that for the Sbox *S*, we have

$$S(y) = T \circ \sigma(y)$$
, where $\sigma(y) = y^{-1}$ and $T(y) = L(y) + b$

• The round function of Lumora(16*n*, *n*): $\pi \circ \ell \circ \eta$

• For $\hat{y} = (y_i, y_{i+1}, y_{i+2}, y_{i+3}) \in (\mathbb{F}_{2^n})^4$, the word operation W is defined as

$$W(\hat{y}) = \begin{bmatrix} \alpha^{-1} + 1 & \alpha^{-1} & 1 & \alpha^{-1} + 1 \\ \alpha + 1 & \alpha & \alpha^{-1} & \alpha^{-1} \\ \alpha & \alpha + 1 & \alpha^{-1} + 1 & \alpha^{-1} \\ \alpha^{-1} & \alpha^{-1} & \alpha^{-1} + 1 & 1 \end{bmatrix} \begin{bmatrix} T(y_i^{-1}) \\ T(y_{i+1}) \\ T(y_{i+2}) \\ T(y_{i+2}) \\ T(y_{i+3}) \end{bmatrix}$$

i.e., $W(\hat{y}) = M_1 \cdot (M_2 \cdot (M_3 \cdot (M_4 \cdot \hat{b})))$, where $\hat{b} = \begin{bmatrix} T(y_i^{-1}) \\ T(y_{i+1}) \\ T(y_{i+1}) \\ T(y_{i+2}) \\ T(y_{i+3}) \end{bmatrix}$

The Even–Mansour Construction

(

Lumora(256, 16)

• The underlying finite field $\mathbb{F}_{2^{16}}$ is defined by the polynomial $t(x) = x^{16} + x^{12} + x^3 + x + 1$, which is a primitive polynomial over \mathbb{F}_2

Thus,

$$\begin{split} L(x) &= 110x + 481dx^2 + 81e3x^4 + 5b63x^8 + a75x^{16} + b3b4x^{32} + 7305x^{64} + 6ab7x^{128} + b846x^{256} + 665cx^{512} + \\ & 9e0cx^{1024} + 8df6x^{2048} + d2b8x^{4096} + 4754x^{8192} + 4c6bx^{16384} + 2689x^{32768} \end{split}$$

Lumora(256, 16)

- The differential uniformity of the Sbox is 4, as in⁷, implying maximum differential probability of the Sbox is $\frac{4}{2^{16}} = 2^{-14}$
- The maximum absolute correlation of the Sbox is 2⁻⁷
- The Wide-Trail Strategy⁸ guarantees that the minimum number of active S-boxes in any four-round differential (or linear) trail of Lumora(16*n*, *n*) is lower bounded by 25
 - the maximum differential probability (or absolute correlation) of any four-round differential (or linear) trail of Lumora(256, 16) is upper bounded by 2⁻³⁵⁰ (or 2⁻¹⁷⁵), respectively
- Total number of rounds in Lumora(256, 16): 10

⁷Kaisa Nyberg (1994). "Differentially uniform mappings for cryptography". In: *Advances in Cryptology — EUROCRYPT '93*, pp. 55–64. ⁸Joan Daemen (1995). *Cipher and hash function design, strategies based on linear and differential cryptanalysis, PhD Thesis*. http://jda.noekeon.org/. K.U.Leuven.

Lumora(512, 32) and Lumora(1024, 64)

Lumora(512, 32)

- The primitive polynomial: $x^{32} + x^{22} + x^2 + x^1 + 1$
- The Sbox: $S = T \circ \sigma$ and $T(y) = L(y) + \alpha$, where L is corresponding to the matrix

$$\begin{bmatrix} 0_8 & 0_8 & I_8 & I_8 \\ I_8 & 0_8 & 0_8 & 0_8 \\ I_8 & I_8 & 0_8 & 0_8 \\ 0_8 & 0_8 & I_8 & 0_8 \end{bmatrix}$$

• Total number of rounds: 8

Lumora(1024, 64)

- The primitive polynomial: $x^{64} + x^4 + x^3 + x + 1$
- The Sbox: $S = T \circ \sigma$ and $T(y) = L(y) + \alpha$, where L is corresponding to the matrix

0 ₁₆	0 ₁₆	I ₁₆	I ₁₆
I ₁₆	0 ₁₆	0 ₁₆	0 16
I ₁₆	I ₁₆	0 ₁₆	0 ₁₆
0 ₁₆	0 ₁₆	I ₁₆	0 ₁₆

• Total number of rounds: 6

FAEST Signature Algorithm

- FAEST is one of NIST 14 2nd round additional signature candidates.
- It uses AES or AES in EM mode as the one-way function circuits and vector oblivious linear evaluation (VOLE) based, named as VOLE-in-the-head for the ZKP.
- Core idea:
 - Secret Key: AES encryption key k
 - Public Key: (m, c), where $c = AES_k(m)$
 - Signature: the proof in non-interactive zero-knowledge proof that signer knows k such that AES_k(m) = c.

FAEST Signature Algorithm (cont.)

- FAEST comes in several variants, offering trade-offs between security, speed, and signature size.
- Security Parameter
 - Defines the target security level (aligned with AES-128, AES-192, or AES-256)
 - \blacktriangleright Higher levels \rightarrow stronger security, but with larger proofs and slower performance

• Even-Mansour Variant

- > Treats the block cipher as a public permutation: Key is public, input is secret.
- Simplifies zero-knowledge proofs by avoiding key schedule simulation.
- ► For 192 and 256-bit security, it uses Rijndael (larger block size).
- ShiftRows, MixColumns, AddRoundKey in AES or Rijndael: All are linear over \mathbb{F}_2
- Sbox in AES or Rijndael: In the zero-knowledge proof scheme, one inverse only counts as one constraint in R1CS relation, i.e., x ⋅ y = 1 ⇔ y = x⁻¹.

FAEST Signature Algorithm (cont.)

Variant	Block Size	Key Size	Enc. Rounds	# Constraints	# Constraints	Total
				in Enc.	in Key Gen	Constraints
FAEST-128	128 bits	128 bits	10	$10 \times 16 = 160$	40	200
FAEST-192	128 bits	192 bits	12	$12 \times 16 = 192$	32	224
FAEST-256	128 bits	256 bits	14	$14 \times 16 = 224$	52	276
FAEST-EM-128	128 bits	Public	10	$10 \times 16 = 160$	0 (key is public)	160
FAEST-EM-192	192 bits (Rijndael)	Public	12	12 × 24 = 288	0	288
FAEST-EM-256	256 bits (Rijndael)	Public	14	$14 \times 32 = 448$	0	448

• Note: Lumora(256, 16) has only 160 constraints in total!

Work in Progress

Cryptanalysis and implementation of Lumora

- Additional cryptanalysis on Lumora(16n, n):
 - Algebraic attacks (degree progressing, ···,)
 - Integral attacks
 - Invariant subspaces
- Implementation considerations and challenges (hardware-software co-design, tower field computation vs FFT, ···)

Applications of Lumora

- Lumora based FAEST style PQC DSA and performance comparisons
- Exploring other potential applications of Lumora(16n, n) by embedding Lumora into zkSNARK schemes (e.g., Polaris/Aurora based PQC DSA)

Conclusion

- Each instantiation of Lumora(16n, n) follows a unified .
 - only the block size varies, defined over the binary extension field \mathbb{F}_{2^n} , with $n \in \{16, 32, 64\}$
- Lumora(16n, n) without key can be directly used in a sponge mode.
- We can also put the permutation in **Feistel/NLFSR** structure with two registers and each with 16*n* bits.
 - In this structure, for example, n = 32, we have a 1024-bit internal state, but the number of the rounds should be double in this case.
- Lumora(16*n*, *n*) has MiMC by design.
- Choice of the inverse function over \mathbb{F}_{2^n} is motivated by determined by R1CS (Rank 1 constraint system) relation.
- Selecting n = 16, 32, 64 allows efficient implementation via tower fields.

Thanks! Questions?