

Permutation-based cryptography and post-quantum security

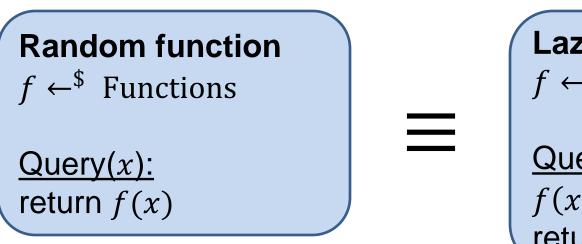
Dominique Unruh

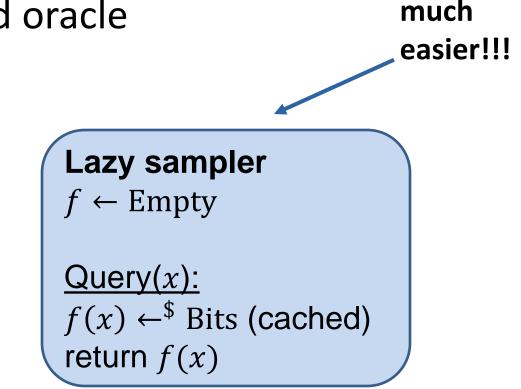
RWTH Aachen University of Tartu

Permutations in cryptography

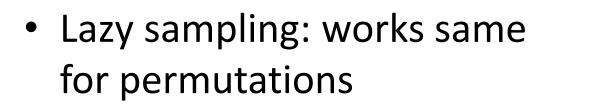
Unstructured permutations

- Building block of many constructions
 - E.g., Sponge/SHA3, Even-Mansour
- Block ciphers
 - Family of permutations
 - As building block
 - As a goal
 - e.g., 3/4-round Luby-Rackoff

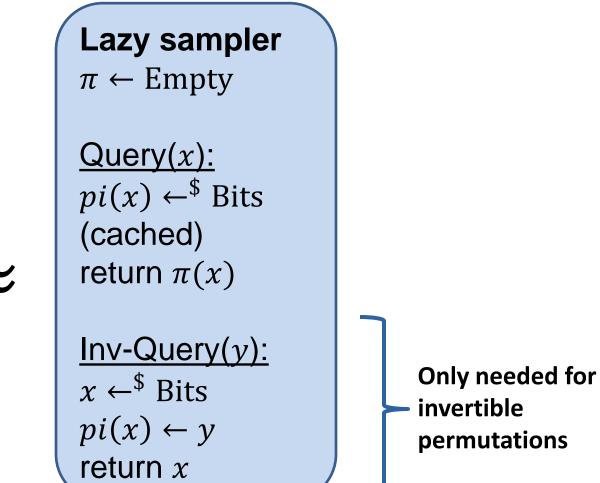

Random functions / permutations


- Unstructured functions / permutations
 often modeled as
 random functions / permutations
- E.g., random oracle model, ideal cipher model, pseudo-random permutations, round function of Sponge

	Uses	Makes
Luby-Rackoff	Function (family)	Permutation (family)
Even-Mansour	Permutation	Permutation (family)
Sponge	Permutation	Function


How to prove things? (Classically)

- Consider random functions (heuristically or PRF)
- Random function = lazy sampled oracle


Lazy sampling permutations

Random permutation $\pi \leftarrow ^{\$}$ Permutations

 $\frac{\text{Query}(x):}{\text{return }\pi(x)}$

Inv-Query(y): return $\pi^{-1}(y)$

- Lazy sampling in post-quantum security?
- Adversary can do "superposition queries": Ask for

 $|H(1)\rangle + |H(2)\rangle + |H(3)\rangle + \cdots$

in single query

- Lazy sampler would need to sample whole oracle in first step
 → defeats the idea
- Measurements disturb state
 → can't "look" at query or make log

Post-quantum security: Not all is well

- Can't just heuristically assume a "classical" random function
- Known:

- Fiat-Shamir can become postquantum insecure (salvageable in many circumstances)
- Fischlin transform also
- 3-round Luby-Rackoff insecure
- Must model random functions/permutations with superposition queries!

[Ambainis, Rosmanis, U, Quantum attacks on classical proof systems, 2014]

[Kuwakado, Morii, Quantum distinguisher between the 3-round Feistel..., 2010]

Direct proofs (situation-specific technique, model quantum)

- Random function is one-way
- Random function \approx random permutation (non-invertible)
- Random function is collision-resistant
- Etc.

Hard for complex / multi-round constructions (e.g., Sponge)

Post-quantum security: Solutions? (II)

General methods:

- Oneway-to-hiding (O2H)
 - "Cannot distinguish H and modified H, unless I query H where it was modified"
 - Also applies to permutations (not sure it's used)
- Compressed oracles
 - Lazy sampling in superposition
 - Tricky but powerful
 - Not for permutations (yet)

[U, Revocable quantum timed-release encryption, 2014]

[Zhandry, How to record quantum queries, 2019]

Compressed oracles (I)

- Want to simulate a random function
- Keep quantum register for each output
- Initially: In superposition between all outputs $|0\rangle + |1\rangle + |2\rangle + \cdots$
- Querying collapses

 $|0\rangle + |2\rangle + |4\rangle + \cdots$

Compressed oracles (II)

- Added trick: New state $| \perp \rangle$ instead of $|0\rangle + |1\rangle + |2\rangle + \cdots$
- Query:

$$|\perp\rangle \rightarrow |0\rangle + |2\rangle + |4\rangle + \cdots$$

- Use as initial state for all outputs.
- (Many details omitted)

Compressed oracles (III)

Effect:

- Lazy sampling in superposition
- E.g., query $|0\rangle$, then query $|1\rangle + |2\rangle + |3\rangle$.
- Leads to:

 $|0 \mapsto x, 1 \mapsto y\rangle + |0 \mapsto x, 2 \mapsto y\rangle + |0 \mapsto x, 3 \mapsto y\rangle$

• In each state, only 2 outputs have been sampled!

Compressed oracles (IV)

$$|0 \mapsto x, 1 \mapsto y\rangle + |0 \mapsto x, 2 \mapsto y\rangle + |0 \mapsto x, 3 \mapsto y\rangle$$

Powerful:

- Can track queries
- Efficient representation
- Can look at the list of queries
 - Important for simulators

→ Indifferentiability proofs for Merkle-Damgård and Sponge

[Zhandry, How to record quantum queries, 2019]

[Czajkowski, Majenz, Schaffner, Zur, Quantum lazy sampling ..., 2019]

Compressed oracles and permutations

- Can we use the compressed oracle for permutations?
- Yes and no...

- For non-invertible permutations: Trivial by "random permutation \approx random function"
- For invertible permutations...

- Earlier version of [Czajkowski, Majenz, Schaffner, Zur, 2019]: Constructs a C.O. variant for permutations, shows indifferentiability of Sponge. Broken!
- [Unruh, Compressed Permutation Oracles, 2021]: Constructs a C.O. variant for permutations, shows collision-resistance of Sponge. Broken!

 [Hosoyamada, Iwata, 4-Round Luby-Rackoff..., 2019]: Uses C.O. to that Luby-Rackoff implements a permutation. Broken!

There's a curse on the C.O. and permutations!

One more

paper appeared last

week...

• Can we simulate *permutations* using the compressed oracles?

• Can we show the postquantum security of Sponge? (Using an invertible round function)

(Trying to) save the C.O. permutations

Defining the C.O. with permutations is easy:

- C.O. maintains a list of input/output pairs (in superposition)
- Oracle **QUERY** allows to get an output
- Define oracle **FLIP** that exchanges input/output pairs (in superposition)
- Result: A permutation that is lazily sampled, and can be queried both directions

(Trying to) save the C.O. permutations (II)

Problem:

QUERY/FLIP \approx random permutation ???

• Proving this is elusive, conjectured true

Only result:

If you can find a construction using random oracles that implements the QUERY/FLIP C.O. (Luby-Rackoff?) then

QUERY/FLIP \approx random permutation

(Trying to) save the C.O. permutations (III)

Can we prove Sponge secure? (E.g., indifferentiable.)

- If QUERY/FLIP works, probably yes. (Not checked)
- *Last week* on arXiv: Indifferentiability of Sponge using C.O.
- Sidesteps the permutation C.O.

• I have not yet managed to understand/check the detail, but I can give the basic idea

Proving Sponge (II)

Idea:

Then prove security using the rhs as round function, and treat permutation π as public.

Needs C.O. only for h, k, ℓ

[Alagic, Carolan, Majenz, Tokat, The Sponge is quantum indifferentiable, 2025]

• Permutations quite tricky in the post-quantum world

• Sponge maybe secure

- Paper appeared last week (arXiv)
- But I think we need to wait a bit till we know whether we can trust it

