
Permutation-based cryptography
and post-quantum security

Dominique Unruh

RWTH Aachen
University of Tartu



Permutations in cryptography

Unstructured permutations

• Building block of many constructions

– E.g., Sponge/SHA3, Even-Mansour

• Block ciphers

– Family of permutations

– As building block

– As a goal
e.g., 3/4-round Luby-Rackoff

2



Random functions / permutations

• Unstructured functions / permutations
 often modeled as
random functions / permutations

• E.g., random oracle model, ideal cipher model,
pseudo-random permutations, round function of Sponge

3

Uses Makes

Luby-Rackoff Function (family) Permutation (family)

Even-Mansour Permutation Permutation (family)

Sponge Permutation Function



How to prove things?  (Classically)

• Consider random functions  (heuristically or PRF)

• Random function = lazy sampled oracle

4

Random function

𝑓 ←$  Functions 

Query(𝑥):

return 𝑓(𝑥)

Lazy sampler

𝑓 ← Empty 

Query(𝑥): 

𝑓 𝑥 ←$ Bits (cached) 

return 𝑓(𝑥)

≡

much
easier!!!



Lazy sampling permutations

• Lazy sampling: works same
for permutations

5

Random permutation

𝜋 ←$  Permutations 

Query(𝑥):

return 𝜋(𝑥)

Inv-Query(𝑦):

return 𝜋−1(𝑦)

Lazy sampler

𝜋 ← Empty 

Query(𝑥): 

𝑝𝑖 𝑥 ←$ Bits 

(cached) 

return 𝜋(𝑥)

Inv-Query(𝑦):

𝑥 ←$ Bits 

𝑝𝑖 𝑥 ← 𝑦 

return 𝑥

≈
Only needed for
invertible
permutations



Postquantum security:  Lazy sampling?

• Lazy sampling in post-quantum security?

• Adversary can do “superposition queries”:
Ask for

𝐻(1) + 𝐻 2 + 𝐻 3 + ⋯
in single query

• Lazy sampler would need to sample whole oracle in first step
→ defeats the idea

• Measurements disturb state
→ can’t “look” at query or make log

6

Long believed to

be impossible!



Post-quantum security:  Not all is well

• Can’t just heuristically assume a “classical” random function

• Known:

– Fiat-Shamir can become postquantum insecure
(salvageable in many circumstances)

– Fischlin transform also

– 3-round Luby-Rackoff insecure

• Must model random functions/permutations
with superposition queries!

7

[Ambainis, Rosmanis, U, Quantum attacks on classical proof systems, 2014]

[Kuwakado, Morii, Quantum distinguisher between the 3-round Feistel…, 2010]



Post-quantum security:  Solutions?

Direct proofs  (situation-specific technique, model quantum)

• Random function is one-way

• Random function ≈ random permutation (non-invertible)

• Random function is collision-resistant

• Etc.

Hard for complex / multi-round constructions (e.g., Sponge)

8

[Zhandry, A note on quantum collision and , 2023]



Post-quantum security:  Solutions?   (II)

General methods:

• Oneway-to-hiding (O2H)

– “Cannot distinguish 𝐻 and modified 𝐻,
unless I query 𝐻 where it was modified”

– Also applies to permutations (not sure it’s used)

• Compressed oracles

– Lazy sampling in superposition

– Tricky but powerful

– Not for permutations (yet)

9

[U, Revocable quantum timed-release encryption, 2014]

[Zhandry, How to record quantum queries, 2019]



Compressed oracles (I)

• Want to simulate a random function

• Keep quantum register for each output

• Initially: In superposition between all outputs
0 + 1 + 2 + ⋯

• Querying collapses
0 + 2 + 4 + ⋯

10

[Zhandry, How to record quantum queries, 2019]



Compressed oracles (II)

• Added trick: New state | ⊥⟩ instead of 0 + 1 + 2 + ⋯

• Query:

| ⊥⟩    → 0 + 2 + 4 + ⋯

• Use as initial state for all outputs.

• (Many details omitted)

11



Compressed oracles (III)

Effect:

• Lazy sampling in superposition

• E.g., query |0⟩, then query 1 + 2 + 3 .

• Leads to:
0 ↦ 𝑥, 1 ↦ 𝑦 + 0 ↦ 𝑥, 2 ↦ 𝑦 + |0 ↦ 𝑥, 3 ↦ 𝑦⟩

• In each state, only 2 outputs have been sampled!

12



Compressed oracles (IV)

0 ↦ 𝑥, 1 ↦ 𝑦 + 0 ↦ 𝑥, 2 ↦ 𝑦 + |0 ↦ 𝑥, 3 ↦ 𝑦⟩

Powerful:

• Can track queries

• Efficient representation

• Can look at the list of queries
– Important for simulators

→ Indifferentiability proofs for Merkle-Damgård and Sponge

13

[Zhandry, How to record quantum queries, 2019]

[Czajkowski, Majenz, Schaffner, Zur, Quantum lazy sampling …, 2019]



Compressed oracles and permutations

• Can we use the compressed oracle for permutations?

• Yes and no…

• For non-invertible permutations:
Trivial by “random permutation ≈ random function”

• For invertible permutations…

14



Compressed oracle for invertible permutations

• Earlier version of [Czajkowski, Majenz, Schaffner, Zur, 2019]: 
Constructs a C.O. variant for permutations,
shows indifferentiability of Sponge. Broken!

• [Unruh, Compressed Permutation Oracles, 2021]:
Constructs a C.O. variant for permutations,
shows collision-resistance of Sponge. Broken!

• [Hosoyamada, Iwata, 4-Round Luby-Rackoff…, 2019]: Uses C.O. to 
that Luby-Rackoff implements a permutation. Broken!

There’s a curse on the C.O. and permutations!

15

One more 

paper 

appeared last 

week…



Big questions

• Can we simulate permutations using the compressed oracles?

• Can we show the postquantum security of Sponge?
(Using an invertible round function)

16



(Trying to) save the C.O. permutations

Defining the C.O. with permutations is easy:

• C.O. maintains a list of input/output pairs
(in superposition)

• Oracle QUERY allows to get an output

• Define oracle FLIP that exchanges input/output pairs
(in superposition)

• Result: A permutation that is lazily sampled,
and can be queried both directions

17

[U, Towards Compressed Permutation Oracles, 2023]



(Trying to) save the C.O. permutations  (II)

Problem:

QUERY/FLIP   ≈   random permutation  ???

• Proving this is elusive, conjectured true

Only result:

If you can find a construction using random oracles
that implements the QUERY/FLIP C.O.  (Luby-Rackoff?)

then

QUERY/FLIP  ≈  random permutation

18

[U, Towards Compressed Permutation Oracles, 2023]



(Trying to) save the C.O. permutations  (III)

19

// symmetry

// by proof

// C(H) perm,
  f random



Proving Sponge

Can we prove Sponge secure? (E.g., indifferentiable.)

• If QUERY/FLIP works, probably yes. (Not checked)

• Last week on arXiv:
Indifferentiability of Sponge using C.O.

• Sidesteps the permutation C.O.

• I have not yet managed to understand/check the detail,
but I can give the basic idea

20



Proving Sponge  (II)

Idea:

Then prove security using the rhs as round function,
and treat permutation 𝜋 as public.

Needs C.O. only for ℎ, 𝑘, ℓ

21

𝜙 𝜋ℎ 𝑘 ℓ≈

[Alagic, Carolan, Majenz, Tokat, The Sponge is quantum indifferentiable, 2025]



Conclusions

• Permutations quite tricky in the post-quantum world

• Sponge maybe secure

– Paper appeared last week (arXiv)

– But I think we need to wait a bit till we know whether we can trust it

22


	Slide 1: Permutation-based cryptography and post-quantum security
	Slide 2: Permutations in cryptography
	Slide 3: Random functions / permutations
	Slide 4: How to prove things?  (Classically)
	Slide 5: Lazy sampling permutations
	Slide 6: Postquantum security:  Lazy sampling?
	Slide 7: Post-quantum security:  Not all is well
	Slide 8: Post-quantum security:  Solutions?
	Slide 9: Post-quantum security:  Solutions?   (II)
	Slide 10: Compressed oracles (I)
	Slide 11: Compressed oracles (II)
	Slide 12: Compressed oracles (III)
	Slide 13: Compressed oracles (IV)
	Slide 14: Compressed oracles and permutations
	Slide 15: Compressed oracle for invertible permutations
	Slide 16: Big questions
	Slide 17: (Trying to) save the C.O. permutations
	Slide 18: (Trying to) save the C.O. permutations  (II)
	Slide 19: (Trying to) save the C.O. permutations  (III)
	Slide 20: Proving Sponge
	Slide 21: Proving Sponge  (II)
	Slide 22: Conclusions

