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Introduction



Second-Factor Authentication

• Many systems rely on password-based authentication

• Second-factor authentication mitigates the weaknesses of passwords

• Some use time-based one-time password schemes
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TOTP: Time-Based One-Time Password Algorithm [MMPR11] (RFC 6238)

• Client and Server share a secret key κ

• The password is generated by applying

HOTP(κ, ctr) = Truncate (HMAC(κ, ctr))

where:

• HMAC may be HMAC-SHA-256 or HMAC-SHA-512

• ctr is a counter based on the current time (typically changes every 30s)

• Truncate truncates the output to a 6-digit number

• Downside: Server must securely store κ
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Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server P

h

?
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· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server P

h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server PP ′

h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server PP ′ h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

P

P

h

?
=

· · · h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P ′ h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P

h

?
=

P ′ h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P

h

?
=

P

h

?
=

P ′ h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19



Hash Chains and S/Key (cont’d)

X0 X1 X2 · · · XK−1 XK
h h h h h

Weaknesses

• Not time-based: increases attack window if logins are scarce

• Iterating a hash function weakens its security =⇒ security degradation by factor K
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T/Key [KMB17]

X0 X1 X2 · · · XK−1 XK

hid1 hid2 hid3 hidK−1 hidK

30s 30s 30s

• Domain separation and salt incorporation: hidk (·) := h(⟨ctrk⟩t ∥ id ∥ ·):
• ⟨ctrk⟩t is timestamp encoded over t bits

• id is s-bit random salt

• X0 is n-bit uniformly random string

• Every point on the chain is valid for a limited amount of time

• Suggestion by the designers:

s = 80 t = 32 K = 221 n = 130 30s time frames
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Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K )

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation
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Security Model



Security Model
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on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P

• Online phase:

A makes q
(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users
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Security of T/Key in the New Model with a Random Oracle

• Bound from T/Key designers:

Adv
T/Key
RO (qoff , qon, 1) = O

(
qoff + qon

2n

)

• We prove (up to logarithmic factors):

Adv
T/Key
RO (qoff , qon,M) = O

(
M

2s
· qoff
2n

+max

(
M

2s
; 1

)
· qon
2n

)
• Assuming qoff ≪ 2128, qon ≪ 2100, and M ≪ 252, password size can be reduced

from 130 to 100
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Security of T/Key with a Hash Function Construction

• Let H be a hash function construction:

Adv
T/Key
H (qoff , qon, 1) ≤ Adv

T/Key
RO (qoff , qon, 1) + AdviffH (qoff + qon)

where AdviffH denotes the indifferentiability advantage of H

• But indifferentiability is overkill:

• Online/offline separation lost with indifferentiability

• The actual security property is a complex variant of preimage resistance

A dedicated analysis will likely give a better bound
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T/Key with the Sponge Construction



The Sponge Construction [BDPV07]
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· · ·
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P

Z1

P

Z2

P

· · ·

· · ·

• Permutation P of size b = r + c

• M1∥ · · · ∥Mℓ is the message padded into r -bit blocks

• The sponge construction has a tight indifferentiability bound [BDPV08]:

AdviffSponge (q) ≤
q(q + 1)

2c
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T/Key with the Sponge Construction
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• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, padtrunc, pad
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T/Key with the Sponge Construction: Optimization
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• Salt and counter are part of the initial state

• Requires that s + t ≤ c

• Our security bound holds both for the sponge and this optimization
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T/Key with the Sponge Construction: Security

Using generic composition: (assuming qoff ≥ qon)

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q2off
2c︸︷︷︸

Adv
iff
Sponge

)

=⇒ Minimum permutation size: b = 256

We derive:

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+min
( qon
2n−r

;
qoff qon
2c

))

=⇒ Password size increased to n ≥ 149 . . .

. . . but permutation size can be lowered to b = 150

=⇒ Could be instantiated with, e.g., Spongent permutation [BKL+11]

(b = 176, c = 150, r = 26)
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T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
( qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))
• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19



T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
( qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))

• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19



T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
( qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))
• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19



T/Key with the Sponge Construction: Proof Idea (cont’d)

Simplified idea: the game can be decomposed into K different games
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Game 1: Adversary wins if it finds a preimage ofX1

• Offline phase: qoff +
∑K

k=2 q
(k)
on queries

• Online phase: q
(1)
on queries

Random X0

pad

Random X0

pad

Random X1

Random X2

pad
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T/Key with a Truncated Permutation



T/Key with a Truncated Permutation
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• Using a sponge?

• In most cases, the permutation is large enough to absorb everything at once

• Construction behaves as truncated permutation

• Hash chain becomes truncated permutation chain
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Security of T/Key with a Truncated Permutation

• Using generic composition with indifferentiability:

Adv
T/Key
TruncP (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q
3/2
off

2
2b−n

2

+
qoff

2b−(n+t)︸ ︷︷ ︸
Adv

iff
TruncP

)

• We derive:

Adv
T/Key
TruncP (qoff , qon,M) = O

(
Adv

T/Key
RO (qoff , qon,M)+

KM · qoff
2b

+max

(
KM

2n
; 1

)
·qon
2c

)
• The bound is tight

• Assume we want password sizes of n = 100, qoff ≪ 2128, qon ≪ 2100:

• Generic composition indicates we need b ≥ 260

• Our bound indicates we need b ≥ 200 as long as M ≪ 240
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Conclusion



Conclusion

We analyzed the security of hash chain based password systems:

• Refined model that distinguishes offline vs. online complexity

• Security proofs with a random oracle, sponge, and truncated permutation:

• Shows that truncated permutations work for most use cases

• With truncated permutation, password size can be lowered to n = 100

• Improved understanding of the preimage resistance of cascaded sponge

evaluations

• Results hold in the random oracle/permutation model

Thank you for your attention!
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