
Permutation-Based Hash Chains with

Application to Password Hashing

Charlotte Lefevre, Bart Mennink

Radboud University (The Netherlands)

PBC 2025

4 May 2025

1 / 19

Introduction

Second-Factor Authentication

• Many systems rely on password-based authentication

• Second-factor authentication mitigates the weaknesses of passwords

• Some use time-based one-time password schemes

2 / 19

Second-Factor Authentication

• Many systems rely on password-based authentication

• Second-factor authentication mitigates the weaknesses of passwords

• Some use time-based one-time password schemes

2 / 19

Second-Factor Authentication

• Many systems rely on password-based authentication

• Second-factor authentication mitigates the weaknesses of passwords

• Some use time-based one-time password schemes

2 / 19

TOTP: Time-Based One-Time Password Algorithm [MMPR11] (RFC 6238)

• Client and Server share a secret key κ

• The password is generated by applying

HOTP(κ, ctr) = Truncate (HMAC(κ, ctr))

where:

• HMAC may be HMAC-SHA-256 or HMAC-SHA-512

• ctr is a counter based on the current time (typically changes every 30s)

• Truncate truncates the output to a 6-digit number

• Downside: Server must securely store κ

3 / 19

TOTP: Time-Based One-Time Password Algorithm [MMPR11] (RFC 6238)

• Client and Server share a secret key κ

• The password is generated by applying

HOTP(κ, ctr) = Truncate (HMAC(κ, ctr))

where:

• HMAC may be HMAC-SHA-256 or HMAC-SHA-512

• ctr is a counter based on the current time (typically changes every 30s)

• Truncate truncates the output to a 6-digit number

• Downside: Server must securely store κ

3 / 19

TOTP: Time-Based One-Time Password Algorithm [MMPR11] (RFC 6238)

• Client and Server share a secret key κ

• The password is generated by applying

HOTP(κ, ctr) = Truncate (HMAC(κ, ctr))

where:

• HMAC may be HMAC-SHA-256 or HMAC-SHA-512

• ctr is a counter based on the current time (typically changes every 30s)

• Truncate truncates the output to a 6-digit number

• Downside: Server must securely store κ

3 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server P

h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server P

h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server PP ′

h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server PP ′ h

?
=

· · ·

h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

P

P

h

?
=

· · · h

?
=

h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P ′ h

?
=

h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P

h

?
=

P ′ h

?
=

h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key [Lam81, Hal95] (RFC 1760)

Client X0 X1 X2 · · · XK−1 XK
h h h h h

Server

PP

h

?
=

· · ·

h

?
=

P

h

?
=

P

h

?
=

P ′ h

?
=

• Client generates X0, sends securely P = hK (X0) to Server

• At authentication round number k , Client sends P ′ = hK−k(X0) to Server

• Server checks whether h(P ′) = P

4 / 19

Hash Chains and S/Key (cont’d)

X0 X1 X2 · · · XK−1 XK
h h h h h

Weaknesses

• Not time-based: increases attack window if logins are scarce

• Iterating a hash function weakens its security =⇒ security degradation by factor K

5 / 19

T/Key [KMB17]

X0 X1 X2 · · · XK−1 XK

hid1 hid2 hid3 hidK−1 hidK

30s 30s 30s

• Domain separation and salt incorporation: hidk (·) := h(⟨ctrk⟩t ∥ id ∥ ·):
• ⟨ctrk⟩t is timestamp encoded over t bits

• id is s-bit random salt

• X0 is n-bit uniformly random string

• Every point on the chain is valid for a limited amount of time

• Suggestion by the designers:

s = 80 t = 32 K = 221 n = 130 30s time frames

6 / 19

T/Key [KMB17]

X0 X1 X2 · · · XK−1 XK

hid1 hid2 hid3 hidK−1 hidK

30s 30s 30s

• Domain separation and salt incorporation: hidk (·) := h(⟨ctrk⟩t ∥ id ∥ ·):
• ⟨ctrk⟩t is timestamp encoded over t bits

• id is s-bit random salt

• X0 is n-bit uniformly random string

• Every point on the chain is valid for a limited amount of time

• Suggestion by the designers:

s = 80 t = 32 K = 221 n = 130 30s time frames

6 / 19

T/Key [KMB17]

X0 X1 X2 · · · XK−1 XK

hid1 hid2 hid3 hidK−1 hidK

30s 30s 30s

• Domain separation and salt incorporation: hidk (·) := h(⟨ctrk⟩t ∥ id ∥ ·):
• ⟨ctrk⟩t is timestamp encoded over t bits

• id is s-bit random salt

• X0 is n-bit uniformly random string

• Every point on the chain is valid for a limited amount of time

• Suggestion by the designers:

s = 80 t = 32 K = 221 n = 130 30s time frames
6 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security of T/Key

Assuming that h is a random oracle, T/Key is secure up to bound [KMB17]

2(q + K)

2n

where q denotes the number of queries to h

Our Contribution: refined and improved security of hash chains

1 Capture the time-based release pattern of T/Key in a security model

2 Refined security proof with a random oracle

3 Dedicated security analysis with the sponge construction

4 Dedicated security analysis with a truncated permutation

7 / 19

Security Model

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoffqoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
onq

(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P

• Online phase:

A makes q
(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoff

qoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
onq

(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase:

A makes q
(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoff

qoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
onq

(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoff

qoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
on

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoff

qoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
on

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

qoff

qoff

XK

q
(K)
on

XK−1

q
(K−1)
on q

(K)
onq

(3)
on q

(K−1)
on q

(K)
onq

(2)
on

X2

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on

X1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security Model

X0 X1 X2 XKXK−1

hidKhidK−1· · ·
hid3hid2hid1

q
(3)
on q

(K−1)
on q

(K)
onq

(2)
onq

(1)
on qoff

• h is a hash function construction based on an ideal primitive P
• Offline phase: A makes qoff queries to P
• Online phase: A makes q

(k)
on queries to P at each step

• A wins if they invert any of the Xk within the livespan of that Xk

• Security advantage is denoted by Adv
T/Key
h (qoff , qon,M), where

• qon =
∑

k q
(k)
on (we assume qon ≪ 2100)

• M denotes the number of users

8 / 19

Security of T/Key in the New Model with a Random Oracle

• Bound from T/Key designers:

Adv
T/Key
RO (qoff , qon, 1) = O

(
qoff + qon

2n

)

• We prove (up to logarithmic factors):

Adv
T/Key
RO (qoff , qon,M) = O

(
M

2s
· qoff
2n

+max

(
M

2s
; 1

)
· qon
2n

)
• Assuming qoff ≪ 2128, qon ≪ 2100, and M ≪ 252, password size can be reduced

from 130 to 100

9 / 19

Security of T/Key in the New Model with a Random Oracle

• Bound from T/Key designers:

Adv
T/Key
RO (qoff , qon, 1) = O

(
qoff + qon

2n

)
• We prove (up to logarithmic factors):

Adv
T/Key
RO (qoff , qon,M) = O

(
M

2s
· qoff
2n

+max

(
M

2s
; 1

)
· qon
2n

)

• Assuming qoff ≪ 2128, qon ≪ 2100, and M ≪ 252, password size can be reduced

from 130 to 100

9 / 19

Security of T/Key in the New Model with a Random Oracle

• Bound from T/Key designers:

Adv
T/Key
RO (qoff , qon, 1) = O

(
qoff + qon

2n

)
• We prove (up to logarithmic factors):

Adv
T/Key
RO (qoff , qon,M) = O

(
M

2s
· qoff
2n

+max

(
M

2s
; 1

)
· qon
2n

)
• Assuming qoff ≪ 2128, qon ≪ 2100, and M ≪ 252, password size can be reduced

from 130 to 100

9 / 19

Security of T/Key with a Hash Function Construction

• Let H be a hash function construction:

Adv
T/Key
H (qoff , qon, 1) ≤ Adv

T/Key
RO (qoff , qon, 1) + AdviffH (qoff + qon)

where AdviffH denotes the indifferentiability advantage of H

• But indifferentiability is overkill:

• Online/offline separation lost with indifferentiability

• The actual security property is a complex variant of preimage resistance

A dedicated analysis will likely give a better bound

10 / 19

Security of T/Key with a Hash Function Construction

• Let H be a hash function construction:

Adv
T/Key
H (qoff , qon, 1) ≤ Adv

T/Key
RO (qoff , qon, 1) + AdviffH (qoff + qon)

where AdviffH denotes the indifferentiability advantage of H
• But indifferentiability is overkill:

• Online/offline separation lost with indifferentiability

• The actual security property is a complex variant of preimage resistance

A dedicated analysis will likely give a better bound

10 / 19

Security of T/Key with a Hash Function Construction

• Let H be a hash function construction:

Adv
T/Key
H (qoff , qon, 1) ≤ Adv

T/Key
RO (qoff , qon, 1) + AdviffH (qoff + qon)

where AdviffH denotes the indifferentiability advantage of H
• But indifferentiability is overkill:

• Online/offline separation lost with indifferentiability

• The actual security property is a complex variant of preimage resistance

A dedicated analysis will likely give a better bound

10 / 19

T/Key with the Sponge Construction

The Sponge Construction [BDPV07]

0r

0c

r

c

M1

P

· · ·

· · ·

P

Mℓ

P

Z1

P

Z2

P

· · ·

· · ·

• Permutation P of size b = r + c

• M1∥ · · · ∥Mℓ is the message padded into r -bit blocks

• The sponge construction has a tight indifferentiability bound [BDPV08]:

AdviffSponge (q) ≤
q(q + 1)

2c

11 / 19

The Sponge Construction [BDPV07]

0r

0c

r

c

M1

P

· · ·

· · ·

P

Mℓ

P

Z1

P

Z2

P

· · ·

· · ·

• Permutation P of size b = r + c

• M1∥ · · · ∥Mℓ is the message padded into r -bit blocks

• The sponge construction has a tight indifferentiability bound [BDPV08]:

AdviffSponge (q) ≤
q(q + 1)

2c

11 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, padtrunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad

pad
trunc, pad

trunc, padtrunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad

trunc, pad

trunc, padtrunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, pad

trunc, padtrunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, padtrunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, pad

trunc, pad

12 / 19

T/Key with the Sponge Construction

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

• Assume that s + t = 2r and n + 1 = 2r

• SC
(i)
k represents the salt and counter blocks

• X̃
(i)
k represents a password block after padding

Random X0

pad
trunc, pad

trunc, pad

trunc, pad

12 / 19

T/Key with the Sponge Construction: Optimization

0r

X̃
(1)
k−1

idm ∥

⟨ctrk⟩t

0c−t−s

P

X̃
(2)
k−1

P

X
(1)
k

P

X
(2)
k

• Salt and counter are part of the initial state

• Requires that s + t ≤ c

• Our security bound holds both for the sponge and this optimization

13 / 19

T/Key with the Sponge Construction: Security

Using generic composition: (assuming qoff ≥ qon)

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q2off
2c︸︷︷︸

Adv
iff
Sponge

)

=⇒ Minimum permutation size: b = 256

We derive:

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+min
(qon
2n−r

;
qoff qon
2c

))

=⇒ Password size increased to n ≥ 149 . . .

. . . but permutation size can be lowered to b = 150

=⇒ Could be instantiated with, e.g., Spongent permutation [BKL+11]

(b = 176, c = 150, r = 26)

14 / 19

T/Key with the Sponge Construction: Security

Using generic composition: (assuming qoff ≥ qon)

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q2off
2c︸︷︷︸

Adv
iff
Sponge

)

=⇒ Minimum permutation size: b = 256

We derive:

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+min
(qon
2n−r

;
qoff qon
2c

))

=⇒ Password size increased to n ≥ 149 . . .

. . . but permutation size can be lowered to b = 150

=⇒ Could be instantiated with, e.g., Spongent permutation [BKL+11]

(b = 176, c = 150, r = 26)
14 / 19

T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
(qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))
• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19

T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
(qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))

• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19

T/Key with the Sponge Construction: Proof Idea

Adv
T/Key
Sponge (qoff , qon, 1) = O

(
Kqoff
2n

+
Kqoff
2c

+ min
(qon
2n−r

;
qoff qon
2c

))
Building blocks:

• Preimage resistance of the sponge [LM22]:

AdvepreSponge (q) = O
(

q

2n
+min

(
q

2n−r
;
q(q + 1)

2c

))
• PRF security of the outer keyed sponge with key size n [ADMV15, NY16, Men18]:
(assuming n ≤ b)

AdvprfOKS(M,N) = O
(
NM

2c
+

N

2n

)
where M denotes the online complexity and N the offline complexity

15 / 19

T/Key with the Sponge Construction: Proof Idea (cont’d)

Simplified idea: the game can be decomposed into K different games

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

Game 1: Adversary wins if it finds a preimage ofX1

• Offline phase: qoff +
∑K

k=2 q
(k)
on queries

• Online phase: q
(1)
on queries

Random X0

pad

Random X0

pad

Random X1

Random X2

pad

16 / 19

T/Key with the Sponge Construction: Proof Idea (cont’d)

Simplified idea: the game can be decomposed into K different games

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

Game 2: Adversary wins if it finds a preimage ofX2

• Offline phase: qoff +
∑K

k=3 q
(k)
on queries

• Online phase: q
(2)
on queries

• Use PRF advantage =⇒ X1 replaced with a random value

Random X0

pad

Random X0

pad

Random X1

Random X2

pad

16 / 19

T/Key with the Sponge Construction: Proof Idea (cont’d)

Simplified idea: the game can be decomposed into K different games

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

Game 2: Adversary wins if it finds a preimage ofX2

• Offline phase: qoff +
∑K

k=3 q
(k)
on queries

• Online phase: q
(2)
on queries

• Use PRF advantage =⇒ X1 replaced with a random value

Random X0

pad

Random X0

pad

Random X1

Random X2

pad

16 / 19

T/Key with the Sponge Construction: Proof Idea (cont’d)

Simplified idea: the game can be decomposed into K different games

0r

0c

SC
(1)
1

r

c

P

SC
(2)
1

P

X̃
(1)
0

P

X̃
(2)
0

P

X
(1)
1

P

X
(2)
1

0r

0c

SC
(1)
2

r

c

P

SC
(2)
2

P

X̃
(1)
1

P

X̃
(2)
1

P

X
(1)
2

P

X
(2)
2

0r

0c

SC
(1)
3

r

c

P

SC
(2)
3

P

X̃
(1)
2

P

X̃
(2)
2

P

X
(1)
3

P

X
(2)
3

Game 3: Adversary wins if it finds a preimage ofX3

• Offline phase: qoff +
∑K

k=4 q
(k)
on queries

• Online phase: q
(3)
on queries

• Use PRF advantage =⇒ X2 replaced with a random value

Random X0

pad

Random X0

pad

Random X1

Random X2

pad

16 / 19

T/Key with a Truncated Permutation

T/Key with a Truncated Permutation

0r

X̃
(1)
k−1

r

⟨ctrk⟩t
t

idm

s

0c−t−s
c−s−t

P

X̃
(2)
k−1

P

X
(1)
k

P

X
(2)
k

• Using a sponge?

• In most cases, the permutation is large enough to absorb everything at once

• Construction behaves as truncated permutation

• Hash chain becomes truncated permutation chain

17 / 19

T/Key with a Truncated Permutation

0r

X̃
(1)
k−1

r

⟨ctrk⟩t
t

idm

s

0c−t−s
c−s−t

P

X̃
(2)
k−1

P

X
(1)
k

P

X
(2)
k

• Using a sponge?

• In most cases, the permutation is large enough to absorb everything at once

• Construction behaves as truncated permutation

• Hash chain becomes truncated permutation chain

17 / 19

T/Key with a Truncated Permutation

Xk−1
n

⟨ctrk⟩t
t

idm

s

0c−t−s
c−s−t

P

Xk

• Using a sponge?

• In most cases, the permutation is large enough to absorb everything at once

• Construction behaves as truncated permutation

• Hash chain becomes truncated permutation chain

17 / 19

T/Key with a Truncated Permutation

X0

n

⟨ctr1⟩t
t

idm

s

0c−t−s
c−s−t

P

X1

⟨ctr2⟩t
idm

0c−t−s

P

X2

⟨ctr3⟩t
idm

0c−t−s

P · · ·
⟨ctrK ⟩t
idm

0c−t−s

P

XK

• Using a sponge?

• In most cases, the permutation is large enough to absorb everything at once

• Construction behaves as truncated permutation

• Hash chain becomes truncated permutation chain

17 / 19

Security of T/Key with a Truncated Permutation

• Using generic composition with indifferentiability:

Adv
T/Key
TruncP (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q
3/2
off

2
2b−n

2

+
qoff

2b−(n+t)︸ ︷︷ ︸
Adv

iff
TruncP

)

• We derive:

Adv
T/Key
TruncP (qoff , qon,M) = O

(
Adv

T/Key
RO (qoff , qon,M)+

KM · qoff
2b

+max

(
KM

2n
; 1

)
·qon
2c

)
• The bound is tight

• Assume we want password sizes of n = 100, qoff ≪ 2128, qon ≪ 2100:

• Generic composition indicates we need b ≥ 260

• Our bound indicates we need b ≥ 200 as long as M ≪ 240

18 / 19

Security of T/Key with a Truncated Permutation

• Using generic composition with indifferentiability:

Adv
T/Key
TruncP (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q
3/2
off

2
2b−n

2

+
qoff

2b−(n+t)︸ ︷︷ ︸
Adv

iff
TruncP

)

• We derive:

Adv
T/Key
TruncP (qoff , qon,M) = O

(
Adv

T/Key
RO (qoff , qon,M)+

KM · qoff
2b

+max

(
KM

2n
; 1

)
·qon
2c

)
• The bound is tight

• Assume we want password sizes of n = 100, qoff ≪ 2128, qon ≪ 2100:

• Generic composition indicates we need b ≥ 260

• Our bound indicates we need b ≥ 200 as long as M ≪ 240

18 / 19

Security of T/Key with a Truncated Permutation

• Using generic composition with indifferentiability:

Adv
T/Key
TruncP (qoff , qon, 1) = O

(
qoff
2n+s

+
qon
2n︸ ︷︷ ︸

Adv
T/Key
RO

+
q
3/2
off

2
2b−n

2

+
qoff

2b−(n+t)︸ ︷︷ ︸
Adv

iff
TruncP

)

• We derive:

Adv
T/Key
TruncP (qoff , qon,M) = O

(
Adv

T/Key
RO (qoff , qon,M)+

KM · qoff
2b

+max

(
KM

2n
; 1

)
·qon
2c

)
• The bound is tight

• Assume we want password sizes of n = 100, qoff ≪ 2128, qon ≪ 2100:

• Generic composition indicates we need b ≥ 260

• Our bound indicates we need b ≥ 200 as long as M ≪ 240

18 / 19

Conclusion

Conclusion

We analyzed the security of hash chain based password systems:

• Refined model that distinguishes offline vs. online complexity

• Security proofs with a random oracle, sponge, and truncated permutation:

• Shows that truncated permutations work for most use cases

• With truncated permutation, password size can be lowered to n = 100

• Improved understanding of the preimage resistance of cascaded sponge

evaluations

• Results hold in the random oracle/permutation model

Thank you for your attention!

19 / 19

Conclusion

We analyzed the security of hash chain based password systems:

• Refined model that distinguishes offline vs. online complexity

• Security proofs with a random oracle, sponge, and truncated permutation:

• Shows that truncated permutations work for most use cases

• With truncated permutation, password size can be lowered to n = 100

• Improved understanding of the preimage resistance of cascaded sponge

evaluations

• Results hold in the random oracle/permutation model

Thank you for your attention!

19 / 19

References i

Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van Assche.

Security of Keyed Sponge Constructions Using a Modular Proof Approach.

In Gregor Leander, editor, Fast Software Encryption - 22nd International

Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected

Papers, volume 9054 of Lecture Notes in Computer Science, pages 364–384.

Springer, 2015.

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

Sponge functions.

Ecrypt Hash Workshop 2007, May 2007.

19 / 19

References ii

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

On the Indifferentiability of the Sponge Construction.

In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th

Annual International Conference on the Theory and Applications of Cryptographic

Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, volume 4965 of

Lecture Notes in Computer Science, pages 181–197. Springer, 2008.

Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici,

and Ingrid Verbauwhede.

spongent: A Lightweight Hash Function.

In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and

Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,

19 / 19

References iii

September 28 - October 1, 2011. Proceedings, volume 6917 of Lecture Notes in

Computer Science, pages 312–325. Springer, 2011.

Neil Haller.

The S/KEY One-Time Password System.

Request for Comments (RFC) 1760, February 1995.

Dmitry Kogan, Nathan Manohar, and Dan Boneh.

T/Key: Second-Factor Authentication From Secure Hash Chains.

In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,

Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November

03, 2017, pages 983–999. ACM, 2017.

19 / 19

References iv

Leslie Lamport.

Password Authentification with Insecure Communication.

Commun. ACM, 24(11):770–772, 1981.

Charlotte Lefevre and Bart Mennink.

Tight Preimage Resistance of the Sponge Construction.

In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -

CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO

2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV, volume

13510 of Lecture Notes in Computer Science, pages 185–204. Springer, 2022.

Bart Mennink.

Key Prediction Security of Keyed Sponges.

IACR Trans. Symmetric Cryptol., 2018(4):128–149, 2018.

19 / 19

References v

D. M’Raihi, S. Machani, M. Pei, and J. Rydell.

TOTP: Time-Based One-Time Password Algorithm.

Request for Comments (RFC) 6238, May 2011.

Yusuke Naito and Kan Yasuda.

New Bounds for Keyed Sponges with Extendable Output: Independence

Between Capacity and Message Length.

In Thomas Peyrin, editor, Fast Software Encryption - 23rd International

Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected

Papers, volume 9783 of Lecture Notes in Computer Science, pages 3–22. Springer,

2016.

19 / 19

	Introduction
	Security Model
	T/Key with the Sponge Construction
	T/Key with a Truncated Permutation
	Conclusion

