Insights into the Algebraic Structure of χ

Björn Kriepke Gohar Kyureghyan

University of Rostock, Germany

PBC 2025, May 4

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 1 / 64

- First introduced by Joan Daemen¹.
- χ is a permutation on *n* bits if and only if *n* is odd ¹.
- χ is shift-invariant.
- χ is quadratic, i.e. algebraic degree 2.
- χ^{-1} has algebraic degree (n+1)/2.
- An explicit formula for the inverse is known².

¹Joan Daemen. "Cipher and hash function design strategies based on linear and differential cryptanalysis". PhD thesis. Doctoral Dissertation, March 1995, KU Leuven, 1995.

²Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. "The inverse of χ and its applications to Rasta-like ciphers". In: *Journal of Cryptology* 35.4 (2022) = p. 28. $\neg \land \land$

	Cryptographic algorithm	Length
	SHA-3 (Keccak)	<i>n</i> = 5
-	ASCON	<i>n</i> = 5
-	Subterranean	<i>n</i> = 257
	Rasta/Dasta/Agrasta	several options for <i>n</i>

イロト イヨト イヨト イヨト

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does χ change the bit x_i ?

< ∃ > <

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does χ change the bit x_i ? $y_i = x_i + 1$

★ ∃ ▶ ★

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does χ change the bit x_i ? $y_i = x_i + 1 \iff x_{i+2}(1 + x_{i+1}) = 1$

< ∃ > <

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does χ change the bit x_i ? $y_i = x_i + 1 \iff x_{i+2}(1 + x_{i+1}) = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).$

★ ∃ ►

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does χ change the bit x_i ? $y_i = x_i + 1 \iff x_{i+2}(1 + x_{i+1}) = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).$ $\rightsquigarrow \chi$ flips the bit x_i if and only if x_i is followed by the pattern 01.

Definition

 $\chi:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n,x\mapsto y=\chi(x)$ given by

$$y_i = x_i + x_{i+2}(1 + x_{i+1})$$

where the indices are taken modulo n.

When does
$$\chi$$
 change the bit x_i ?
 $y_i = x_i + 1 \iff x_{i+2}(1 + x_{i+1}) = 1 \iff (x_{i+1}, x_{i+2}) = (0, 1).$
 $\rightsquigarrow \chi$ flips the bit x_i if and only if x_i is followed by the pattern 01.

Definition

 χ is given by the complementing landscape *01.

Kriepke, Kyureghyan

イロト イヨト イヨト イ

Insights into the Algebraic Structure of χ

PBC 2025 5 / 64

3

• • • • • • • • • • • •

Insights into the Algebraic Structure of χ

PBC 2025 5 / 64

3

▲ □ ▶ ▲ □ ▶ ▲

Insights into the Algebraic Structure of χ

PBC 2025 5 / 64

3

→ Ξ →

▲ 西型

Insights into the Algebraic Structure of χ

PBC 2025 5 / 64

3

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Insights into the Algebraic Structure of χ

PBC 2025 5 / 64

3

• • • • • • • • • • • •

We are interested in the iterates of χ , i.e. what is

$$\chi^k(x) = \chi(\chi(\ldots \chi(x) \ldots))$$

for $k \geq 1$.

Let
$$x = x^{(0)} \in \mathbb{F}_2^n$$
 and denote $x^{(k)} = \chi^k(x^{(0)})$. Then

$$x_i^{(0)} = x_i$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let
$$x = x^{(0)} \in \mathbb{F}_2^n$$
 and denote $x^{(k)} = \chi^k(x^{(0)})$. Then

$$egin{aligned} &x_i^{(0)} = x_i \ &x_i^{(1)} = \chi(x)_i = x_i + x_{i+2}(1+x_{i+1}) \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Let $x = x^{(0)} \in \mathbb{F}_2^n$ and denote $x^{(k)} = \chi^k(x^{(0)})$. Then

$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \chi(x)_i = x_i + x_{i+2}(1 + x_{i+1}) \\ x_i^{(2)} &= \chi(x^{(1)})_i = x_i^{(1)} + x_{i+2}^{(1)}(1 + x_{i+1}^{(1)}) \end{aligned}$$

э

• • • • • • • • • • • •

Let
$$x = x^{(0)} \in \mathbb{F}_2^n$$
 and denote $x^{(k)} = \chi^k(x^{(0)})$. Then

$$\begin{aligned} x_i^{(0)} &= x_i \\ x_i^{(1)} &= \chi(x)_i = x_i + x_{i+2}(1 + x_{i+1}) \\ x_i^{(2)} &= \chi(x^{(1)})_i = x_i^{(1)} + x_{i+2}^{(1)}(1 + x_{i+1}^{(1)}) \\ &= x_i + x_{i+2}(1 + x_{i+1}) \\ &+ (x_{i+2} + x_{i+4}(1 + x_{i+3})) \cdot (1 + x_{i+1} + x_{i+3}(1 + x_{i+2})) \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$(x_{i+2} + x_{i+4}(1 + x_{i+3})) \cdot ((1 + x_{i+1}) + x_{i+3}(1 + x_{i+2}))$$

$$(x_{i+2} + x_{i+4}(1 + x_{i+3})) \cdot ((1 + x_{i+1}) + x_{i+3}(1 + x_{i+2}))$$

Because we are in \mathbb{F}_2 we have $x_i \cdot (1 + x_i) = 0$.

< ∃ >

$$(x_{i+2} + x_{i+4}(1 + x_{i+3})) \cdot ((1 + x_{i+1}) + x_{i+3}(1 + x_{i+2}))$$

Because we are in \mathbb{F}_2 we have $x_i \cdot (1 + x_i) = 0$. In particular:

$$\begin{aligned} x_{i+2}x_{i+3}(1+x_{i+2}) &= 0, \\ x_{i+4}(1+x_{i+3})x_{i+3}(1+x_{i+2}) &= 0. \end{aligned}$$

< ∃ >

$$(x_{i+2} + x_{i+4}(1 + x_{i+3})) \cdot ((1 + x_{i+1}) + x_{i+3}(1 + x_{i+2}))$$

Because we are in \mathbb{F}_2 we have $x_i \cdot (1 + x_i) = 0$. In particular:

$$\begin{aligned} x_{i+2}x_{i+3}(1+x_{i+2}) &= 0, \\ x_{i+4}(1+x_{i+3})x_{i+3}(1+x_{i+2}) &= 0. \end{aligned}$$

After multiplying out we get

$$x_{i+2}(1+x_{i+1})+x_{i+4}(1+x_{i+3})(1+x_{i+1}).$$

→ Ξ →

After simplifying we are left with

$$x_i^{(2)} = x_i + x_{i+4}(1 + x_{i+3})(1 + x_{i+1}).$$

Image: A match a ma

Similarly,

$$\begin{aligned} x_i^{(3)} &= x_i + x_{i+2} \cdot (1 + x_{i+1}) \\ &+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \\ &+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \end{aligned}$$

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Similarly,

$$egin{aligned} &x_i^{(3)} = x_i + x_{i+2} \cdot (1 + x_{i+1}) \ &+ x_{i+4} \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \ &+ x_{i+6} \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}) \end{aligned}$$

and

$$x_i^{(4)} = x_i + x_{i+8} \cdot (1 + x_{i+7}) \cdot (1 + x_{i+5}) \cdot (1 + x_{i+3}) \cdot (1 + x_{i+1}).$$

Kriepke, Kyureghyan

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Warm-up

We define $\gamma_{2k}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).$$

イロト イヨト イヨト イヨト

2

Warm-up

We define $\gamma_{2k}: \mathbb{F}_2^n \to \mathbb{F}_2^n$ given by

$$\gamma_{2k}(x)_i = x_{i+2k} \cdot (1 + x_{i+2k-1}) \cdot (1 + x_{i+2k-3}) \cdots (1 + x_{i+1}).$$

With that notation we have

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

What is the general pattern?

Definition

The notation $j \leq k$ means that any power of 2 occuring in the binary expansion of j also appears in the binary expansion of k. We say that j is covered by k.

Example

$$\begin{array}{l} 4 = (100)_2 \preceq (101)_2 = 5 \\ 9 = (1001)_2 \preceq (1011)_2 = 11 \\ 27 = (11011)_2 \preceq (11111)_2 = 31 \end{array}$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 12 / 64

Let $k \ge 1$. Then

$$\chi^k = \sum_{j=0}^{\min\{k,(n-1)/2\}} a_j \gamma_{2j}$$

with $a_i = 1$ if and only if $j \leq k$.

A (10) < A (10) </p>

3

Let $k \ge 1$. Then

$$\chi^k = \sum_{j=0}^{\min\{k,(n-1)/2\}} a_j \gamma_{2j}$$

with $a_j = 1$ if and only if $j \leq k$.

This is very surprising:

• It is unlikely in general to find any closed form for iterates of functions.

Let $k \ge 1$. Then

$$\chi^k = \sum_{j=0}^{\min\{k,(n-1)/2\}} a_j \gamma_{2j}$$

with $a_j = 1$ if and only if $j \leq k$.

This is very surprising:

- **1** It is unlikely in general to find any closed form for iterates of functions.
- 2 It is surprising that the iterates are always linear combinations of γ_{2k} .

Let $k \ge 1$. Then

$$\chi^k = \sum_{j=0}^{\min\{k,(n-1)/2\}} a_j \gamma_{2j}$$

with $a_j = 1$ if and only if $j \leq k$.

This is very surprising:

- It is unlikely in general to find any closed form for iterates of functions.
- 2 It is surprising that the iterates are always linear combinations of γ_{2k} .
- The coefficients are easy to compute.

Our previous notation is difficult to use for our purposes. For example

$$x_{i+1} \circ (x_{i+2} \cdot (1 + x_{i+1})) = x_{i+3} \cdot (1 + x_{i+2}).$$

On the left the x_{i+1} means "add 1 to every index" while on the right x_{i+1} means "(i+1)th entry of x".

 \rightsquigarrow We want notation that is better suited for compositions.

We introduce the cyclic left-shift operator $S:\mathbb{F}_2^n
ightarrow\mathbb{F}_2^n$ given by

$$S(x_1,\ldots,x_n)=(x_2,x_3,\ldots,x_n,x_1)$$

and the Hadamard-product \odot given by

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \odot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 y_1 \\ x_2 y_2 \\ \vdots \\ x_n y_n \end{pmatrix}$$

•

15 / 64
Remember, χ is given by

$$\chi(x)_i = x_i + x_{i+2}(1 + x_{i+1}).$$

In vector form:

$$\chi(x) = \begin{pmatrix} x_1 + x_3(1 + x_2) \\ x_2 + x_4(1 + x_3) \\ x_3 + x_5(1 + x_2) \\ \vdots \\ x_n + x_2(1 + x_1) \end{pmatrix}.$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

16 / 64

3

This can also be written as

$$\chi(x) = \begin{pmatrix} x_1 + x_3(1 + x_2) \\ x_2 + x_4(1 + x_3) \\ x_3 + x_5(1 + x_2) \\ \vdots \\ x_n + x_2(1 + x_1) \end{pmatrix}$$
$$= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} x_3 \\ x_4 \\ x_5 \\ \vdots \\ x_2 \end{pmatrix} \odot \left[\begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_1 \end{pmatrix} \right]$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

17 / 64

3

This can also be written as

$$\chi(x) = \begin{pmatrix} x_1 + x_3(1 + x_2) \\ x_2 + x_4(1 + x_3) \\ x_3 + x_5(1 + x_2) \\ \vdots \\ x_n + x_2(1 + x_1) \end{pmatrix}$$
$$= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} x_3 \\ x_4 \\ x_5 \\ \vdots \\ x_2 \end{pmatrix} \odot \left[\begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_1 \end{pmatrix} \right]$$
$$= x + S^2(x) \odot (\mathbb{1} + S(x)).$$

3

Image: A match a ma

Now we can write it as

$$\chi = \mathsf{id} + S^2 \odot (\mathbb{1} + S) = \gamma_0 + \gamma_2$$

where id is the identity function and $\mathbb{1}=(1,1,\ldots,1)\in\mathbb{F}_2^n.$ Furthermore,

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot (\mathbb{1} + S^{2k-3}) \odot \ldots \odot (\mathbb{1} + S)$$

and $\gamma_0 := \mathsf{id}$.

- ∢ ∃ ▶

3

This notation is better suited for our purposes, for example

$$S \circ (S^2 \odot (\mathbb{1} + S)) = S(S^2 \odot (\mathbb{1} + S)) = S^3 \odot (\mathbb{1} + S^2)$$

compared to

$$x_{i+1} \circ (x_{i+2} \cdot (1+x_{i+1})) = x_{i+3} \cdot (1+x_{i+2}).$$

< 行い

э

Goal:

- Study the functions γ_{2k} .
- Obtain results about compositions of the functions γ_{2k} .
- Apply the results to $\chi=\gamma_0+\gamma_2.$

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot (\mathbb{1} + S^{2k-3}) \odot \ldots \odot (\mathbb{1} + S)$$

- γ_{2k} is shift-invariant.
- γ_{2k} has algebraic degree k + 1 if 2k < n.

Basic fact about γ_{2k}

Let *n* be odd.

Lemma

 $\gamma_{2k} = 0$ for 2k > n.

Kriepke, Kyureghyan

∃ >

< □ > < /□ >

- 4 ≣ ≻ - 4

Let *n* be odd.

Lemma

 $\gamma_{2k} = 0 \text{ for } 2k > n.$

Proof.

We have $S^{2k} = S^{2k-n}$ and 2k - n is odd.

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot \ldots \odot (\mathbb{1} + S^{2k-n}) \odot \ldots \odot (\mathbb{1} + S)$$

イロン イ理 とくほ とくほ とう

Let *n* be odd.

Lemma

 $\gamma_{2k} = 0 \text{ for } 2k > n.$

Proof.

We have $S^{2k} = S^{2k-n}$ and 2k - n is odd.

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot \ldots \odot (\mathbb{1} + S^{2k-n}) \odot \ldots \odot (\mathbb{1} + S)$$
$$= S^{2k-n} \odot (\mathbb{1} + S^{2k-n}) \odot (\ldots) = 0.$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Let *n* be odd.

Lemma

 $\gamma_{2k} = 0 \text{ for } 2k > n.$

Proof.

We have $S^{2k} = S^{2k-n}$ and 2k - n is odd.

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot \ldots \odot (\mathbb{1} + S^{2k-n}) \odot \ldots \odot (\mathbb{1} + S)$$
$$= S^{2k-n} \odot (\mathbb{1} + S^{2k-n}) \odot (\ldots) = 0.$$

We will revisit this later for n even.

Kriepke, Kyureghyan

- ▲ 母 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

If γ_0 is not included, then the result does not hold. For example

$$\gamma_2 \circ \gamma_2 = S^4 \odot (\mathbb{1} + S^3)$$

is not a linear combination of γ_{2k} .

Definition

Let G denote the set

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\}.$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

Definition

Let G denote the set

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\}.$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

The Key Lemma implies:

Theorem

G is closed under composition. In other words, (G, \circ) is a monoid.

It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

Example

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 25 / 64

э

It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

Example

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 25 / 64

э

It holds that

$$\gamma_{2m}\left(\gamma_0+\sum_{i=1}^k a_i\gamma_{2i}\right)=\sum_{i=0}^k a_i\gamma_{2i+2m}.$$

Example

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}.$$

This looks like polynomial multiplication!

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 25 / 64

э

< ∃⇒

This looks like polynomial multiplication!

Example

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

 $X^2 \cdot (1 + X^4) = X^2 + X^6$

and

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}$$

 $X^4 \cdot (1 + X^2 + X^6) = X^4 + X^6 + X^{10}.$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 26 / 64

This looks like polynomial multiplication!

Example

$$\gamma_2 \circ (\gamma_0 + \gamma_4) = \gamma_2 + \gamma_6$$

 $X^2 \cdot (1 + X^4) = X^2 + X^6$

and

$$\gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) = \gamma_4 + \gamma_6 + \gamma_{10}$$

 $X^4 \cdot (1 + X^2 + X^6) = X^4 + X^6 + X^{10}.$

Observation: γ_{2k} seems to behave like X^{2k} .

Kriepke, Kyureghyan

We remove the factor of 2 in the exponent of the polynomials.

Example

$$egin{aligned} &\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\ &X\cdot(1+X^2)=X+X^3 \end{aligned}$$

and

$$\begin{split} \gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) &= \gamma_4 + \gamma_6 + \gamma_{10} \\ X^2 \cdot (1 + X + X^3) &= X^2 + X^3 + X^5. \end{split}$$

We remove the factor of 2 in the exponent of the polynomials.

Example

$$egin{aligned} &\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\ &X\cdot(1+X^2)=X+X^3 \end{aligned}$$

and

$$\begin{split} \gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) &= \gamma_4 + \gamma_6 + \gamma_{10} \\ X^2 \cdot (1 + X + X^3) &= X^2 + X^3 + X^5. \end{split}$$

Do we get a map

$$\sum_{i=0}^{k} a_i \gamma_{2i} \mapsto \sum_{i=0}^{k} a_i X^i?$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 27 / 64

We saw before: $\gamma_{2k} = 0$ for 2k > n, in particular $\gamma_{n+1} = 0$.

PBC 2025 28 / 64

We saw before: $\gamma_{2k} = 0$ for 2k > n, in particular $\gamma_{n+1} = 0$.

If we want that the correspondence $\gamma_{2i} \mapsto X^i$ makes sense, we therefore need $X^{(n+1)/2} = 0$.

We saw before: $\gamma_{2k} = 0$ for 2k > n, in particular $\gamma_{n+1} = 0$.

If we want that the correspondence $\gamma_{2i} \mapsto X^i$ makes sense, we therefore need $X^{(n+1)/2} = 0$.

Hence, consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$. We denote by [f] the coset $f + (X^{(n+1)/2})$.

We saw before: $\gamma_{2k} = 0$ for 2k > n, in particular $\gamma_{n+1} = 0$.

If we want that the correspondence $\gamma_{2i} \mapsto X^i$ makes sense, we therefore need $X^{(n+1)/2} = 0$.

Hence, consider the polynomials modulo $X^{(n+1)/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^{(n+1)/2})$. We denote by [f] the coset $f + (X^{(n+1)/2})$.

We obtain a map $\varphi: {
m span}\{\gamma_0,\gamma_2,\ldots,\gamma_{n-1}\}
ightarrow R$ defined by

$$\sum_{i=0}^k a_i \gamma_{2i} \mapsto \left[\sum_{i=0}^k a_i X^i\right].$$

28 / 64

What is $\varphi(G)$?

3

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B

What is $\varphi(G)$?

Denote

$$M = \left\{ \left[1 + \sum_{i=1}^{k} a_i X^i \right] : a_i \in \mathbb{F}_2 \right\} \subseteq R.$$

표 ▶ 표

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is $\varphi(G)$?

Denote

$$M = \left\{ \left[1 + \sum_{i=1}^{k} a_i X^i \right] : a_i \in \mathbb{F}_2 \right\} \subseteq R.$$

Lemma

M is an Abelian monoid, i.e. *M* is closed under polynomial multiplication. $\varphi: G \to M$ is a monoid isomorphism. In particular, $G \cong M$ as monoids and *G* is also an Abelian monoid.

Lemma

M is an Abelian monoid, i.e. *M* is closed under polynomial multiplication. $\varphi: G \to M$ is a monoid isomorphism. In particular, $G \cong M$ as monoids and *G* is also an Abelian monoid.

What does that mean?

Lemma

M is an Abelian monoid, i.e. *M* is closed under polynomial multiplication. $\varphi: G \to M$ is a monoid isomorphism. In particular, $G \cong M$ as monoids and *G* is also an Abelian monoid.

What does that mean?

It means that the composition in G behaves like the multiplication in M.

But the multiplication in M is polynomial multiplication which we understand very well.

It gets even better.

30 / 64

Definition

The multiplicative invertible elements of a ring R are called units. They form a group, called the unit group R^* .

Lemma

Let $f(X) \in \mathbb{F}_2[X]$ be a polynomial. The unit group of the ring $\mathbb{F}_2[X]/(f(X))$ is given by

 $(\mathbb{F}_2[X]/(f(X)))^* = \{[g(X)] : \gcd(f(X), g(X)) = 1\}.$

The inverse of [g(X)] can be found by the Extended Euclidean Algorithm.

・日・ ・ ヨ・・

In our case $f(X) = X^{(n+1)/2}$ and gcd(f(X), g(X)) = 1 if and only if g(0) = 1, in other words, g has constant term 1.

In our case $f(X) = X^{(n+1)/2}$ and gcd(f(X), g(X)) = 1 if and only if g(0) = 1, in other words, g has constant term 1.

Those are exactly the elements of M.

Lemma

M is the unit group of R.

As M is a group, it follows that G is a group.

Theorem

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$$
 is an Abelian group under composition.

Before we go back to studying $\chi_{\rm r}$ we look at a few consequences of this theorem.

Theorem

 $G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$ is an Abelian group under composition.

Let $f \in G$ be arbitrary. Then it holds:
$G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$ is an Abelian group under composition.

Let $f \in G$ be arbitrary. Then it holds:

f is shift-invariant.

 $G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$ is an Abelian group under composition.

Let $f \in G$ be arbitrary. Then it holds:

- I is shift-invariant.
- 2) f is a permutation of \mathbb{F}_2^n .

 $G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$ is an Abelian group under composition.

Let $f \in G$ be arbitrary. Then it holds:

- I is shift-invariant.
- 2) f is a permutation of \mathbb{F}_2^n .
- **(3)** f^{-1} can be computed using the Extended Euclidean algorithm.

 $G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_{n-1}\} \cong M$ is an Abelian group under composition.

Let $f \in G$ be arbitrary. Then it holds:

- I is shift-invariant.
- 2) f is a permutation of \mathbb{F}_2^n .
- 3 f^{-1} can be computed using the Extended Euclidean algorithm.
- The algebraic degrees of f and f^{-1} are easy to determine.

э

< A□ > < □ >

• Pick any algebraic degree $d \leq (n+1)/2$.

- Pick any algebraic degree $d \leq (n+1)/2$.
- 2 Choose any polynomial $p = \left[1 + \sum_{i=1}^{d-1} a_i X^i\right] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ of degree d-1.

- Pick any algebraic degree $d \leq (n+1)/2$.
- 3 Choose any polynomial $p = \left[1 + \sum_{i=1}^{d-1} a_i X^i\right] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ of degree d-1.
- 3 The map $f = \gamma_0 + \sum_{i=1}^{d-1} a_i \gamma_{2i}$ is a shift-invariant permutation of algebraic degree d.

- Pick any algebraic degree $d \leq (n+1)/2$.
- 3 Choose any polynomial $p = \left[1 + \sum_{i=1}^{d-1} a_i X^i\right] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ of degree d-1.
- 3 The map $f = \gamma_0 + \sum_{i=1}^{d-1} a_i \gamma_{2i}$ is a shift-invariant permutation of algebraic degree d.

• Let
$$q = \left[1 + \sum_{i=1}^k b_i X^i
ight]$$
 be the inverse of p .

- Pick any algebraic degree $d \leq (n+1)/2$.
- 3 Choose any polynomial $p = \left[1 + \sum_{i=1}^{d-1} a_i X^i\right] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ of degree d-1.
- 3 The map $f = \gamma_0 + \sum_{i=1}^{d-1} a_i \gamma_{2i}$ is a shift-invariant permutation of algebraic degree d.

• Let
$$q = \left[1 + \sum_{i=1}^{k} b_i X^i\right]$$
 be the inverse of p .

• Then $f^{-1} = \gamma_0 + \sum_{i=1}^k b_i \gamma_{2i}$ has algebraic degree k + 1.

From here: Study other properties of f and f^{-1} .

What happens for n even?

▲ 西部

3

What happens for n even?

We go through the last slides and highlight the differences.

$$\gamma_{2k} = S^{2k} \odot (\mathbb{1} + S^{2k-1}) \odot (\mathbb{1} + S^{2k-3}) \odot \ldots \odot (\mathbb{1} + S)$$

- γ_{2k} is shift-invariant.
- γ_{2k} has algebraic degree k + 1 if 2k < n and algebraic degree n/2 + 1 for 2k ≥ n.

Let *n* be even.

Lemma

 $\gamma_{2k} = \gamma_{2k-n}$ for $k \ge n$.

Kriepke, Kyureghyan

∃ ⊳

• • • • • • • • • • • •

Let *n* be even.

Lemma

 $\gamma_{2k} = \gamma_{2k-n}$ for $k \ge n$.

Proof.

Similar as before, however now 2k - n is still even.

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

PBC 2025 38 / 64

3

Key Lemma

It holds that $\gamma_{2m}\left(\gamma_0+\sum_{i=1}^ka_i\gamma_{2i}\right)=\sum_{i=0}^ka_i\gamma_{2i+2m}.$

3

• • = • • = •

Definition

Let G denote the set

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_n, \dots, \gamma_{2n-2}\}.$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

Definition

Let G denote the set

$$G = \gamma_0 + \operatorname{span}\{\gamma_2, \gamma_4, \dots, \gamma_n, \dots, \gamma_{2n-2}\}.$$

Note that $\chi = \gamma_0 + \gamma_2 \in G$. We call the maps in G generalized χ -maps.

The Key Lemma implies:

Theorem

G is closed under composition. In other words, (G, \circ) is a monoid.

Example

$$egin{aligned} &\gamma_2\circ(\gamma_0+\gamma_4)=\gamma_2+\gamma_6\ &X\cdot(1+X^2)=X+X^3 \end{aligned}$$

and

$$\begin{aligned} \gamma_4 \circ (\gamma_0 + \gamma_2 + \gamma_6) &= \gamma_4 + \gamma_6 + \gamma_{10} \\ X^2 \cdot (1 + X + X^3) &= X^2 + X^3 + X^5. \end{aligned}$$

Do we get a map

$$\sum_{i=0}^k a_i \gamma_{2i} \mapsto \sum_{i=0}^k a_i X^i?$$

Kriepke, Kyureghyan

→ Ξ →

æ

We saw before: $\gamma_{2k} + \gamma_{2k-n} = 0$ for $k \ge n$, in particular $\gamma_{2n} + \gamma_n = 0$.

If we want that the correspondence $\gamma_{2i} \mapsto X^i$ makes sense, we therefore need $X^n + X^{n/2} = 0$.

Hence, consider the polynomials modulo $X^n + X^{n/2}$, i.e. in the quotient ring $R = \mathbb{F}_2[X]/(X^n + X^{n/2})$. We denote by [f] the coset $f + (X^n + X^{n/2})$.

We obtain a map φ : span $\{\gamma_0, \gamma_2, \dots, \gamma_n, \dots, \gamma_{2n-2}\} \to R$ defined by

$$\sum_{i=0}^k a_i \gamma_{2i} \mapsto \left[\sum_{i=0}^k a_i X^i\right].$$

What is $\varphi(G)$?

Denote

$$M = \left\{ \left[1 + \sum_{i=1}^{k} a_i X^i \right] : a_i \in \mathbb{F}_2 \right\} \subseteq R.$$

Lemma

M is an Abelian monoid, i.e. *M* is closed under polynomial multiplication. $\varphi: G \to M$ is a monoid isomorphism. In particular, $G \cong M$ as monoids and *G* is also an Abelian monoid. For *n* odd we had: $f(X) = X^{(n+1)/2}$ and gcd(f(X), g(X)) = 1 if and only if g(0) = 1.

< A > < A > <

For *n* odd we had: $f(X) = X^{(n+1)/2}$ and gcd(f(X), g(X)) = 1 if and only if g(0) = 1.

Now for *n* even we have: $f = X^n + X^{n/2} = X^{n/2}(1 + X^{n/2})$ and the condition gcd(f(X), g(X)) = 1now does *not* have such a simple characterization. For *n* odd we had: $f(X) = X^{(n+1)/2}$ and gcd(f(X), g(X)) = 1 if and only if g(0) = 1.

Now for *n* even we have: $f = X^n + X^{n/2} = X^{n/2}(1 + X^{n/2})$ and the condition gcd(f(X), g(X)) = 1now does *not* have such a simple characterization.

Lemma

The unit group of R is a proper subset of M.

A proper subset of $G = \gamma_0 + \text{span}\{\gamma_2, \gamma_4, \dots, \gamma_n, \dots, \gamma_{2n-2}\} \cong M$ is an Abelian group under composition.

Example

We know that $\chi = \gamma_0 + \gamma_2$ is not a permutation. Why? $\varphi(\chi) = [1 + X]$ is not invertible in $\mathbb{F}_2[X]/(X^n + X^{n/2})$ because $gcd(1 + X, X^n + X^{n/2}) = 1 + X \neq 1$.

く 何 ト く ヨ ト く ヨ ト

- Pick any algebraic degree $d \le n/2 + 1$.
- Choose any invertible polynomial $p = [1 + \sum_{i=1}^{m} a_i X^i] \in \mathbb{F}_2[X]/(X^n + X^{n/2})$ of degree m = d - 1 or if d = n/2 + 1, then arbitrary degree $m \ge d - 1$.
- 3 The map $f = \gamma_0 + \sum_{i=1}^{d-1} a_i \gamma_{2i}$ is a shift-invariant permutation of algebraic degree d.

• Let
$$q = \left[1 + \sum_{i=1}^{k} b_i X^i\right]$$
 be the inverse of p .

• Then $f^{-1} = \gamma_0 + \sum_{i=1}^k b_i \gamma_{2i}$ has algebraic degree $\min(k+1, n/2 + 1)$.

From here: Study other properties of f and f^{-1} .

Example

The polynomial $[1 + X + X^2] \in \mathbb{F}_2[X]/(X^n + X^{n/2})$ is invertible if and only if *n* is not a multiple of 6.

This gives a shift-invariant permutation $f = \gamma_0 + \gamma_2 + \gamma_4 = \chi + \gamma_4$ of algebraic degree 3.

Due to the similarity to χ this map might be interesting from a cryptographic perspective.

A special case is $n = 2^k$.

We have $f(X) = X^{2^k} + X^{2^{k-1}} = X^{2^{k-1}}(1+X)^{2^{k-1}}$. In particular:

gcd(f(X), g(X)) = 1 iff g(0) = g(1) = 1. In other words, g has constant coefficient 1 and an odd number of terms.

Theorem

Let $n = 2^k$. Any map $f \in \gamma_0 + \text{span}\{\gamma_2, \dots, \gamma_{2n-2}\}$ with an odd number of terms is a permutation of \mathbb{F}_2^n .

Let *n* be odd again.

We return to our study of χ .

We started this talk by looking at the iterates χ^k of χ .

How can we now use the previously discovered tools?

We have $\varphi(\chi) = [1 + X] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ and therefore $\varphi(\chi^k) = [1 + X]^k$.

3

< A□ > < □ >

We have $\varphi(\chi) = [1 + X] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ and therefore $\varphi(\chi^k) = [1 + X]^k$.

By the Binomial Theorem we have

$$[1+X]^k = \left[\sum_{j=0}^k \binom{k}{j} X^j\right].$$

We have $\varphi(\chi) = [1 + X] \in \mathbb{F}_2[X]/(X^{(n+1)/2})$ and therefore $\varphi(\chi^k) = [1 + X]^k$.

By the Binomial Theorem we have

$$[1+X]^k = \left[\sum_{j=0}^k \binom{k}{j} X^j\right].$$

From Lucas's Theorem we know $\binom{k}{j}$ is odd if and only if $j \leq k$. Therefore

$$[1+X]^k = \left[\sum_{j=0}^k \binom{k}{j} X^j\right] = \left[\sum_{j=0}^k a_j X^j\right] = \left[\sum_{j=0}^{\min\{k,(n-1)/2\}} a_j X^j\right].$$

Let $k \ge 1$. Then $\chi^k = \sum_{j=0}^{\min\{k,(n-1)/2\}} a_j \gamma_{2j}$ with $a_j = 1$ if and only if $j \preceq k$.

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

We saw previously:

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

We saw previously:

$$\begin{split} \chi^{0}(x) &= x \\ \chi^{1}(x) &= x + \gamma_{2}(x) \\ \chi^{2}(x) &= x + \gamma_{4}(x) \\ \chi^{3}(x) &= x + \gamma_{2}(x) + \gamma_{4}(x) + \gamma_{6}(x) \\ \chi^{4}(x) &= x + \gamma_{8}(x). \end{split}$$

We now have the explanation:

$$(1 + X)^{0} = 1$$

$$(1 + X)^{1} = 1 + X$$

$$(1 + X)^{2} = 1 + X^{2}$$

$$(1 + X)^{3} = 1 + X + X^{2} + X^{3}$$

$$(1 + X)^{4} = 1 + X^{4}.$$

Kriepke, Kyureghyan

э

Is it possible to use these tools to attack one of the primitives using χ ?

We have an idea but we need help from experts!

We are happy to discuss.
The following are known:

- The order of χ is 2^m with $2^m < n+1 \le 2^{m+1.3}$
- The algebraic degree of χ^{-1} is (n+1)/2.

How are these connected?

³Jan Schoone and Joan Daemen. "The state diagram of χ ". In: *Designs, Codes and Cryptography* 92 (2024), pp. 1393–1421. DOI: 10.1007/s10623=023=01349=8.

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

 χ having order 2^m means that $\chi^{2^m} = id$.

In other words, for any fixed $x \in \mathbb{F}_2^n$ we have $\chi^{2^m}(x) = x$. This means $\chi^{2^{m-1}}(\chi(x)) = x$. Therefore $\chi^{2^{m-1}} = \chi^{-1}$ is the inverse of χ .

Let $x \in \mathbb{F}_2^n$ be fixed. We have the following sequence:

$$\begin{array}{l} x \mapsto \chi(x) \\ \mapsto \chi(\chi(x)) \\ \mapsto \dots \\ \mapsto \underbrace{\chi(\dots(\chi(x)))}_{2^{m} \text{ times}} = x \end{array}$$

When is the first time (after the beginning) that x appears in that sequence?

Suppose that

$$x \mapsto \chi(x) \mapsto \ldots \mapsto \underbrace{\chi(\ldots(\chi(x)))}_{k \text{ times}} = x$$

with minimal k. We say that x has order k under χ . x is included in a cycle of length k in the cycle structure of χ .

- ∢ ∃ ▶

Suppose that

$$x \mapsto \chi(x) \mapsto \ldots \mapsto \underbrace{\chi(\ldots(\chi(x)))}_{k \text{ times}} = x$$

with minimal k. We say that x has order k under χ . x is included in a cycle of length k in the cycle structure of χ .

It holds that

$$\chi^{k-1}(\chi(x)) = x.$$

In other words, for this fixed x the map χ^{k-1} is inverting χ .

If k is fixed, then how many elements of order k are there?

Define

$$C_{k,n} = \{x \in \mathbb{F}_2^n \setminus \{0\} : \gamma_{2k}(x) = 0\}$$

and $c(k, n) = |C_{k,n}|$.

Lemma

All cycles of χ have length $k = 2^s$ for some $0 \le s \le m$. The number of nonzero elements of order $\le 2^s$ is given by $c(2^s, n)$.

We can show that the generating function of c(k, n) equals

$$\sum_{n\geq 0} c(k,n)x^n = \frac{xB'_k(x)}{1-B_k(x)}$$

where $B_k(x) = x + 2x^3 + 4x^5 + \ldots + 2^{k-1}x^{2k-1}$. An explicit formula for c(k, n) is given by

$$c(k,n) = \sum_{N=0}^{n \cdot \frac{k-1}{2k-1}} \frac{n2^N}{n-2N} \sum_{q=0}^{N/k} (-1)^q \binom{n-2N}{q} \binom{n-N-qk-1}{n-2N-1}.$$

Kriepke, Kyureghyan

Insights into the Algebraic Structure of χ

Let n = 257.

k	c(k, n)	$c(k, n)/2^{n}$	$(2^n - c(k, n))/2^n$
1	1.000	4.318e-78	1.000
2	8.659e58	3.739e-19	1.000
4	3.139e74	0.001355	0.9986
8	1.645e77	0.7104	0.2896
16	2.313e77	0.9987	0.001307
32	2.316e77	1.000	1.995e-8
64	2.316e77	1.000	4.644e-18
128	2.316e77	1.000	3.776e-37
256	2.316e77	1.000	4.318e-78

イロト イヨト イヨト イヨト

Let n = 257.

k	c(k, n)	$c(k, n)/2^{n}$	$(2^{n}-c(k,n))/2^{n}$
8	1.645e77	0.7104	0.2896
16	2.313e77	0.9987	0.001307

- Over 71% of elements of \mathbb{F}_2^{257} have order \leq 8.
- Over 99% of elements of \mathbb{F}_2^{257} have order \leq 16.

What does that mean?

.

- Over 71% of elements of \mathbb{F}_2^{257} have order $\leq 8.$
- Over 99% of elements of \mathbb{F}_2^{257} have order \leq 16.

Let $x \in \mathbb{F}_2^n$ be arbitrary.

- With \approx 71% probability we have $\chi^7(\chi(x)) = x$, i.e. we can invert χ with χ^7 which has degree 8.
- With > 99% probability we have $\chi^{15}(\chi(x)) = x$, i.e. we can invert χ with χ^{15} which has degree 16.

Meanwhile, χ^{-1} has degree 129.

How significant is that for an algebraic attack?

For more details:

- n odd: Björn Kriepke and Gohar Kyureghyan. "Algebraic Structure of the Iterates of χ". In: Advances in Cryptology – CRYPTO 2024. Ed. by Leonid Reyzin and Douglas Stebila. Cham: Springer Nature Switzerland, 2024, pp. 412–424. ISBN: 978-3-031-68385-5
- *n* even: In preparation

Thank you for your attention.

< □ > < /□ >