Differential analysis of the ternary hash function Troika

Christina Boura Margot Funk Yann Rotella
Paris-Saclay University - Versailles University

Permutation-Based Crypto workshop
April 232023

Context

Troika: a ternary cryptographic hash function

- Kölbl, Tischhauser, Derbez and Bogdanov [DCC 2019]
- Designed for IOTA's distributed ledger
- Follows the keccak philosophy

Computer-assisted proofs for differential analysis over \mathbb{F}_{2}

- Tool assisted approach (MILP, SAT solvers...)
- Dedicated programs based on a tree traversal [Mella, Daemen, Van Assche, ToSC 2017]

PART 1:
Basics of differential analysis

Differential cryptanalysis

A differential $\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)$ is a couple of differences.

A differential trail Q is a tuple of intermediate differences.

$$
q_{0} \xrightarrow{\mathrm{R}_{0}} q_{1} \xrightarrow{\mathrm{R}_{1}} \cdots q_{k-1} \xrightarrow{\mathrm{R}_{k-1}} q_{k}
$$

Differential cryptanalysis

- $\mathrm{DP}_{f}\left(q_{0}, q_{k}\right) \approx \mathrm{DP}_{\mathrm{R}_{0}}\left(q_{0}, q_{1}\right) \times \mathrm{DP}_{\mathrm{R}_{1}}\left(q_{1}, q_{2}\right) \times \ldots \times \mathrm{DP}_{\mathrm{R}_{k-1}}\left(q_{k-1}, q_{k}\right)$
- Existence of a trail of high probability?
- Convenient to work with the weight:

$$
\mathrm{w}_{f}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right):=-\log \left(\mathrm{DP}_{f}\left(\Delta_{\text {in }}, \Delta_{\text {out }}\right)\right)
$$

Differential trails and trail cores

A 3-round trail

$$
b_{0} \xrightarrow{\mathrm{~S}} a_{1} \xrightarrow{\mathrm{~L}} b_{1} \xrightarrow{\mathrm{~S}} a_{2} \xrightarrow{\mathrm{~L}} b_{2} \xrightarrow{\mathrm{~S}} a_{3} \xrightarrow{\mathrm{~L}} b_{3}
$$

Weight

$$
\mathrm{w}_{\mathrm{S}}\left(b_{0}, a_{1}\right)+\mathrm{w}_{\mathrm{S}}\left(b_{1}, a_{2}\right) \quad+\quad \mathrm{w}_{\mathrm{S}}\left(b_{2}, a_{3}\right)
$$

Differential trails and trail cores

A 3-round trail core

Weight

$$
\min _{b_{0}} \mathrm{w}_{\mathrm{S}}\left(b_{0}, a_{1}\right)+\mathrm{w}_{\mathrm{S}}\left(b_{1}, a_{2}\right)+\min _{a_{3}} \mathrm{w}_{\mathrm{S}}\left(b_{2}, a_{3}\right)
$$

Trail core extension

Forward extension

Lower bounding the weight of trails [MDV17]

Framework:

1. Collect all 2-round trail cores up to a "weight target" with a tree traversal.
2. Try (and fail) to extend these trail cores into trail cores of small weight.

Related work:

- Analysis of xoodoo [DHVV18b, DMA22], ASCON [EMMD22], SUBTERRANEAN [MMGD22]

Our work:

- Define the tree and the extension algorithms for Troika.

PART 2:
 Troika round function

The Troika round function $\mathrm{R}_{i}: \mathbb{F}_{3}^{729} \rightarrow \mathbb{F}_{3}^{729}$
$\mathrm{R}_{i}=\iota_{i} \circ \mathrm{~L} \circ \mathrm{~S}$
$\mathrm{L}=$ AddColumnParity \circ ShiftLanes \circ ShiftRows

Troika state of $9 \times 3 \times 27$ trits

The Troika round function $\mathrm{R}_{i}: \mathbb{F}_{3}^{729} \rightarrow \mathbb{F}_{3}^{729}$
$\mathrm{R}_{i}=\iota_{i} \circ \mathrm{~L} \circ \mathrm{~S}$
$\mathrm{~L}=$ AddColumnParity \circ ShiftLanes \circ ShiftRows

Troika state of $9 \times 3 \times 27$ trits

AddColumnParity

It adds to each trit of a column the parity of two other columns.

Column of parity

$$
t_{0}+t_{1}+t_{2} \in \mathbb{F}_{3}
$$

Kernel of AddColumnParity : $b \in K \Longleftrightarrow$ AddColumnParity $(b)=b$

Question for the 2-round trail cores generation

A 2-round trail core

Can we only specify the positions of the active trits (1, 2)?
\checkmark for ShiftRows and ShiftLanes
x for AddColumnParity
\rightarrow Yes, when $b \in K$.

PART 3:
The space of 3 -round trail cores

Split the 3-round trail cores as in [MDV17]

For 3-round trail cores with b_{1} and b_{2} in the Kernel
\triangleright specific algorithm
For 3-round trail cores with b_{1} or b_{2} outside the Kernel

1. Collect 2-round trail cores (distinguish between trail cores inside / outside the Kernel)
2. Extend the 2 -round trail cores into 3 -round trail cores

3 -round trail cores with b_{1} and b_{2} in the Kernel

We were able to scan all the trail cores of weight ≤ 65 (versus 41 for the other cases).

$z=1$								
0	0	0	0	$\mathbf{1}$	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	$\mathbf{2}$	0	0	0	0
$z=6$								
0	$\mathbf{1}$	0	0	0	0	0	0	0
0	$\mathbf{2}$	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

$z=1$							
0 0 0				00	0	0) 0
0	0	0	0	$0 \quad 0$	0	0) 0
0	0	0	0	02	0	0) 0
$z=6$							
$\begin{array}{\|lll\|}0 & 0 & 1\end{array}$			0	00	0	0) 0
2	0	0	0	00	0	0) 0
0	0	0	0	00	0	0) 0

Active boxes alignment

$z=0$							
0	0	$\mathbf{1}$	0	0	0	0	0
0							
0	0	0	0	0	0	0	0
0							
0	0	$\mathbf{2}$	0	0	0	0	0
0							

$$
z=11
$$

0	0	0	$\mathbf{1}$	0	0	0	0	0
0	0	0	$\mathbf{2}$	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Active trits alignment

PART 4:
The tree to scan the
2-round trail cores

Generate 2-round trail cores $a \xrightarrow{\mathrm{~L}} b$ with a tree [MDV17]

Goal: collect all the 2-round trail cores (a, b) with "few active boxes"
Root of the tree: the 2-round trail core $(a, b)=(0,0) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}$ Child of a node: is generated by adding some vector $\left(u_{i}, v_{i}\right) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}$, called unit

Generate 2-round trail cores $a \xrightarrow{\text { L }} b$ with a tree [MDV17]

Tree pruning:

- by lower bounding the number of active boxes of a node and its descendants
- + criteria to take into account symmetry properties (e.g. z-invariance)

Unstable active coordinates: can be removed by adding a new unit $\left(u_{i}, v_{i}\right)$.

Question: How can we define a tree with few unstable coordinates?

Generate 2-round trail cores $a \xrightarrow{\mathrm{~L}} b$ with a tree [MDV17]

Toy example with a shuffling layer $\mathrm{L}: \mathbb{F}_{2}^{4} \mapsto \mathbb{F}_{2}^{4}$ and $\left(u_{i}, v_{i}\right)=\left(e_{i}, \mathrm{~L}\left(e_{i}\right)\right)$

The tree to collect 2-round trail cores with $b \in K$

\checkmark Nodes with only stable coordinates

The tree to collect 2-round trail cores with $b \notin K$

Choose the columns' values on either side of AddColumnParity in an appropriate order.

The tree to collect 2-round trail cores with $b \notin K$

Choose the columns' values on either side of AddColumnParity in an appropriate order.

The tree to collect 2-round trail cores with $b \notin K$
top view of the state

$\square \square \square$: column of non-zero parity

The tree to collect 2-round trail cores with $b \notin K$
diagram of a state with 3 supra-units (runs)

The tree to collect 2-round trail cores with $b \notin K$
 Reduce the number of unstable coordinates

Motivation:

- the tree pruning is more efficient when there are few unstable coordinates

Where do unstable coordinates come from?

- from supra-units overlappings (can change the value of a column already active)

The tree to collect 2-round trail cores with $b \notin K$
 Reduce the number of unstable coordinates

Motivation:

- the tree pruning is more efficient when there are few unstable coordinates

Where do unstable coordinates come from?

- from supra-units overlappings (can change the value of a column already active)

The tree to collect 2-round trail cores with $b \notin K$
Reduce the number of unstable coordinates
top view of the state

The tree to collect 2-round trail cores with $b \notin K$
Reduce the number of unstable coordinates

The tree to collect 2-round trail cores with $b \notin K$
Reduce the number of unstable coordinates

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

\square unstable coordinates

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

\square unstable coordinates

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

\square unstable coordinates

$$
d=6
$$

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

The tree to collect 2-round trail cores with $b \notin K$

Reduce the number of unstable coordinates

Ordering of supra-units: from diagonal 0 to diagonal 8 .

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
$-\quad$: affected by -1
- parity 1
\diamond : parity 2

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
- : affected by -1
- parity 1
\diamond : parity 2

before AddCP:

after AddCP: $\quad 2$

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
- : affected by -1
- parity 1
\diamond : parity 2

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
$-\quad$: affected by -1
\bigcirc : parity 1
\diamond : parity 2

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
- : affected by -1
\bigcirc : parity 1
\diamond : parity 2

The tree to collect 2-round trail cores with $b \notin K$

Equivalence relation

Types of columns:

+ : affected by +1
$-\quad$: affected by -1
\bigcirc : parity 1
\diamond : parity 2

The tree to collect 2-round trail cores with $b \notin K$ Equivalence relation

Diagrams of states in the same equivalence class
$\times 1$
$\times 2$

Handle the overlappings

The tree to collect 2-round trail cores with $b \notin K$
Equivalence relation

The tree to collect 2-round trail cores with $b \notin K$
Equivalence relation

The tree to collect 2-round trail cores with $b \notin K$
Equivalence relation

The tree to collect 2-round trail cores with $b \notin K$
Equivalence relation

PART 5:
Results

All 3-round trail cores with weight ≤ 41

Number of 3-round trail cores of weight W such that $\lceil W\rceil \leq T_{3}$ for different parity profiles

Result

No 6-round trail cores of weight ≤ 82.
Differential probability of a 24 -round differential trail $<3^{-328}$.
Previous bound: 3^{-300} (on a scaled-down version of Troika with 9 slices).

Execution time

Parity profile	Direction	Time	Parity profile	Direction	Time
$\|K\| K \mid$	backward	22 m 40 s	$\|K\| N \mid$	forward backward	5 m 7 s 5 h 19 m
$\|N\| N \mid$	forward backward	9 h 16 m 17 h 7 m	$\|N\| K \mid$	forward backward	6 h 32 m 26 m 10 s

