Algebraic Attacks on Round-Reduced Keccak ${ }^{1}$

Fukang Liu ${ }^{1}$, Takanori Isobe ${ }^{2,3}$, Willi Meier ${ }^{4}$, Zhonghao Yang ${ }^{5}$

${ }^{1}$ Tokyo Institute of Technology, Tokyo, Japan
${ }^{2}$ University of Hyogo, Hyogo, Japan
${ }^{3}$ NICT, Tokyo, Japan
${ }^{4}$ FHNW, Windisch, Switzerland
${ }^{5}$ East China Normal University, Shanghai, China
PBC 2023

${ }^{1}$ Published at ACISP 2021

Overview

1 Background

- Sponge
- Keccak
- Algebraic Properties of χ

2 Preimage Attacks

- Linear Structure
- Improved (Non)linear Structure
- 3-Round Preimage Attacks
- 4-Round Preimage Attack

■ New Improvement
3 Summary

- Summary and Related Problems

Sponge Construction

■ EUROCRYPT 2008

- application: hash function, AEAD, PRNG, ...
- concrete ciphers: Keccak, Ascon, Poseidon, ...

■ Security: related to (r, c, r^{\prime})

Figure: The sponge construction

Sponge Construction - Keccak

■ SHA-3 standard: Keccak-224/256/384/512, SHAKE-128/256

- many other different $\left(r, c, r^{\prime}\right)$ in Keccak challenges ${ }^{2}$

- General preimage attacks on Keccak: $\mathcal{O}\left(2^{r^{\prime}}\right)$
- r^{\prime} increases as r decreases (for Keccak-224/256/384/512)

[^0]
Keccak State

Figure: The Keccak state $(5 \times 5 \times 64)$

Round Function

■ \#rounds: 24 (TurboSHAKE: 12 rounds)

- $f=R^{24}$ (f : permutation; R : round function)
- $R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$

$\theta: A[x][y]=A[x][y] \oplus \sum_{y=0}^{4} A[x-1][y] \oplus\left(\sum_{y=0}^{4} A[x+1][y]\right) \lll 1$
Figure: The θ operation

Round Function

■ \#rounds: 24 (TurboSHAKE: 12 rounds)

- $f=R^{24}$ (f : permutation; R : round function)
- $R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$

0,0	1,0	2,0	3,0	4,0		0,0	1,1	2,2	3,3	4,4
0,1	1,1	2,1	3,1	4,1		3,0	4,1	0,2	1,3	2,4
0,2	1,2	2,2	3,2	4,2	$\xrightarrow[\pi]{\rho}$	1,0	2,1	3,2	4,3	0,4
0,3	1,3	2,3	3,3	4,3		4,0	0,1	1,2	2,3	3,4
0,4	1,4	2,4	3,4	4,4		2,0	3,1	4,2	0,3	1,4

Figure: The $\pi \circ \rho$ operation

Round Function

■ \#rounds: 24 (TurboSHAKE: 12 rounds)

- $f=R^{24}$ (f : permutation; R : round function)

■ $R=\iota \circ \chi \circ \pi \circ \rho \circ \theta$

Figure: The χ operation

Preimage Attacks on Keccak

- rotational cryptanalysis (FSE 2013)
- linear structure (linear equations, AC 2016)
- linearization technique (quadratic equations, ACISP 2021)
- polynomial method (high-degree equations, EC 2021)
- MitM method (EC 2023)
- better guessing/linearizing strategies (other improvements)

Currently, the best preimage attacks only reach up to 4 rounds.

Preimage Attacks on Keccak

- rotational cryptanalysis (FSE)
- linear structure (linear equations, AC 2017)
- linearization technique (quadratic equations, ACISP 2021)
- polynomial method (hige-degree equations, EC 2021)
- MitM method (EC 2023)
- better guessing/linearizing strategies (other improvements)

Currently, the best preimage attacks only reach up to 4 rounds.

Algebraic Properties of χ

Property 1

For

$$
\begin{equation*}
\chi: y_{i}=x_{i} \oplus\left(x_{i+1} \oplus 1\right) x_{i+2}, \quad 0 \leq i \leq 4 \tag{1}
\end{equation*}
$$

the following equation always holds:

$$
\begin{equation*}
y_{i} \oplus x_{i}=\left(y_{i+1} \oplus 1\right) x_{i+2} \tag{2}
\end{equation*}
$$

This implies that if u consecutive output bits $\left(y_{i}, \ldots, y_{i+u}\right)$ are known where $2 \leq u \leq 4$, we can obtain $u-1$ linear equations in $\left(x_{0}, \ldots, x_{4}\right)$.

Algebraic Properties of χ

Property 2

For

$$
\begin{equation*}
\chi: y_{i}=x_{i} \oplus\left(x_{i+1} \oplus 1\right) x_{i+2}, \quad 0 \leq i \leq 4 \tag{3}
\end{equation*}
$$

the following equation holds with probability 0.75 :

$$
\begin{equation*}
y_{i} \oplus x_{i}=0 \tag{4}
\end{equation*}
$$

This implies that if only y_{i} is known, we can obtain 1 linear equation in $\left(x_{0}, \ldots, x_{4}\right)$ with probability 0.75 .

Linear Structure for Keccak-512

Keccak-512: $r=64 \times 9=576, r^{\prime}=512$

Figure: Illustration of Keccak-512

Linear Structure for Keccak-512

■ many leaked linear equations are not used!!! (\#eqs > \#vars)

Figure: linear structure of Keccak-512

Linear Structure for Keccak-384

Keccak-384: $r=64 \times 13=832, r^{\prime}=384$

\square hash value
\square capacity part

Figure: Illustration of Keccak-384

Linear Structure for Keccak-384

■ many leaked linear equations are not used!!! (\#eqs > \#vars)

Figure: linear structure of Keccak-384

Our Motivation

Make full use of the leaked linear relations?

Improved (Non)linear Structure for Keccak-512

- Constructing linear structures consumes many degrees of freedom, i.e. many bits have to be set as constants.
- What will happen if those bits are not set as constants?
constant

$$
\begin{aligned}
& 64 \times 7=448 \text { linear eqs } \\
& 64 \times(4+3)=448 \text { variables }
\end{aligned}
$$

forced to be linear by using new variables, e.g. $v_{4}=v_{0} v_{1}$

Improved (Non)linear Structure for Keccak-512

■ \#eqs = \# vars!!!

- Solving equations is equivalent to exhausting $2^{64 \times 4}=2^{256}$ possible inputs, i.e. the gain is 2^{256}.

linear \square hash
constant

$$
\begin{aligned}
& 64 \times 7=448 \text { linear eqs } \\
& 64 \times(4+3)=448 \text { variables }
\end{aligned}
$$

Improved (Non)linear Structure for Keccak-384

- \#eqs $<\#$ vars (no advantages?)

linear

hash
constant

$$
\begin{aligned}
& 64 \times 5=320 \text { linear eqs } \\
& 64 \times 6=384 \text { variables }
\end{aligned}
$$

Figure: (non)linear structure of Keccak-384

Improved (Non)linear Structure for Keccak-384

- \#eqs $=\#$ vars (using probabilistic linear equations)

■ gain: $2^{64 \times 5-27}=2^{64 \times 4+37}=2^{293}$ (time com: $2^{384-293}=2^{91}$)

\square linear
\square constant
\square hash 320 eqs +64 prob. eqs (pro. 2^{-27}) $64 \times 6=384$ variables

Figure: (non)linear structure of Keccak-384

Summary of the 2-Round Attacks

- Introduce more variables in the inputs to make full use of leaked linear equations
- Allow the first round to be quadratic
- replace quadratic part with new variables

How to use similar ideas for 3-round preimage attacks?

Improved (Non)linear Structure for 3-Round Keccak-512

- Based on the original linear structure
- Use conditions (1st round) to slow down the diffusion
- linearization technique is costly for too many quadratic terms

Figure: (non)linear structure of 3-Round Keccak-512

Improved (Non)linear Structure for 3-Round Keccak-512

- Based on the original linear structure
- Use conditions (1st round) to slow down the diffusion
- Further guess equations (2nd round) to slow down the diffusion, i.e. making the linearization technique effective

Figure: (non)linear structure of 3-Round Keccak-512

Improved (Non)linear Structure for 3-Round Keccak-512

Determine the required number of guessed equations (t)
■ Goal: \# eqs \geq \# vars

- \#eqs: $t+64 \times 7=448+t$

■ \#vars: $128+(64-t) \times(3+1+3+1+3)+256=1088-11 t$

- $t=54$: $\#$ eqs: 502 , \# vars: 494 (gain: $2^{64 \times 2-54}=2^{74}$)

Figure: (non)linear structure of 3-Round Keccak-512

Improved (Non)linear Structure for 3-Round Keccak-512

How to satisfy conditions?

- They can always be satisfied by assigning proper values to constant parts of the second message block
- Left degrees of freedom: 128 bits
- The number of the 1 st message blocks: $2^{512-128+2}=2^{386}$.

Figure: (non)linear structure of 3-Round Keccak-512

Improved (Non)linear Structure for 3-Round Keccak-512

Details of how to satisfy conditions:

$$
\begin{aligned}
& B_{0}=A^{0}[0][2] \oplus A^{0}[0][3] \oplus A^{0}[0][4], \\
& B_{2}=A^{0}[2][2] \oplus A^{0}[2][3] \oplus A^{0}[2][4], \\
& B_{3}=A^{0}[3][2] \oplus A^{0}[3][3] \oplus A^{0}[3][4], \\
& B_{4}=A^{0}[4][1] \oplus A^{0}[4][2] \oplus A^{0}[4][3] \oplus A^{0}[4][4], \\
& A^{0}[1][0] \oplus\left(B_{0} \oplus C_{0}\right) \oplus\left(B_{2} \oplus C_{1}\right) \lll 1=1^{64}, \\
& A^{0}[1][1] \oplus\left(B_{0} \oplus C_{0}\right) \oplus\left(B_{2} \oplus C_{1}\right) \lll 1=0, \\
& A^{0}[1][4] \oplus\left(B_{0} \oplus C_{0}\right) \oplus\left(B_{2} \oplus C_{1}\right) \lll 1=1^{64}, \\
& A^{0}[3][1] \oplus\left(B_{2} \oplus C_{1}\right) \oplus\left(B_{4} \oplus A^{0}[4][0]\right) \lll 1=0, \\
& A^{0}[3][2] \oplus\left(B_{2} \oplus C_{1}\right) \oplus\left(B_{4} \oplus A^{0}[4][0]\right) \lll 1=0, \\
& A^{0}[4][0] \oplus\left(A^{0}[3][0] \oplus A^{0}[3][1] \oplus B_{3}\right) \oplus\left(B_{0} \oplus C_{0}\right) \lll 1=1^{64}, \\
& A^{0}[4][4] \oplus\left(A^{0}[3][0] \oplus A^{0}[3][1] \oplus B_{3}\right) \oplus\left(B_{0} \oplus C_{0}\right) \lll 1=1^{64} .
\end{aligned}
$$

Improved (Non)linear Structure for 3-Round Keccak-512

Details of how to satisfy conditions:

$$
\begin{aligned}
A^{0}[4][0] & =A^{0}[4][4], \\
A^{0}[3][1] & =A^{0}[3][2], \\
C_{1} & =A^{0}[3][2] \oplus\left(B_{4} \oplus A^{0}[4][0]\right) \lll 1 \oplus B_{2} . \\
A^{0}[1][0] & =A^{0}[1][4], \\
A^{0}[1][1] & =A^{0}[1][4] \oplus 1^{64}, \\
C_{0} & =A^{0}[1][4] \oplus\left(B_{2} \oplus C_{1}\right) \lll 1 \oplus B_{0} \oplus 1^{64} . \\
A^{0}[3][0] & =A^{0}[4][4] \oplus\left(B_{0} \oplus C_{0}\right) \lll 1 \oplus\left(A^{0}[3][1] \oplus B_{3}\right) \oplus 1^{64} .
\end{aligned}
$$

Improved (Non)linear Structure for 3-Round Keccak-384

- Based on the original linear structure
- Use conditions (1st) to slow down the diffusion
- Further guess equations (2nd round) to slow down the diffusion, i.e. making the linearization technique effective

Figure: (non)linear structure of 3-Round Keccak-384

Improved (Non)linear Structure for 3-Round Keccak-384

■ Optimal $t=13$, \#eqs: 461, \#vars: 460

- Left degrees of freedom: 256
- The number of the 1 st message block: $2^{384-256+128+2}=2^{258}$

■ Gain: $2^{64 \times 4-64 \times 2-13-2}=2^{113}$

Figure: (non)linear structure of 3-Round Keccak-384

Summary of the 3-Round Attacks

- Use additional conditions (1st round) to slow down the propagation of variables
- Further guessing linear equations (2nd round) to slow down the propagation of variables
- construct overdefined quadratic equations that can be solved by the linearization technique

Preimage Attack on 4-Round Keccak-384

■ Make the first 2 rounds linear (only a few variables), inspired from the conditional cube attack

- solve a system of quadratic Boolean equations
- The gain is small

Figure: (non)linear structure of 3-Round Keccak-384

New Improvement (Others' Work)

Practical preimages for 2-round Keccak-384 (eprint 2022/788)
■ Slow propagation of variables by adding conditions

- Properly choose constant bits to make $\# 1=1^{64}$
- Properly choose constant bits to make $* 2$ match the hash

■ match the full 384-bit hash with only 256 variables!!!

Using Polynomial Method (EC 2021)

- 4-round Keccak-384: degree-4 eqs in 256 vars (2^{374} bit ops.)
- 4-round Keccak-512: degree-8 eqs in 512 vars (2^{502} bit ops.)

Drawback: too large memory complexity

Using Crossbred Algorithm (ICISC 2021)

■ 4-round Keccak-224: overdefined quadratic eqs (2^{182} calls.)

- 4-round Keccak-256: overdefined quadratic eqs (2^{214} calls.)
based on the 2-round linear structure at EC 2019

Summary

- Slow down the propagation of variables seems important
- Nonlinear equations are better than linear ones
- Advanced techniques for nonlinear equations in Keccak?

■ Construct advanced technique friendly (non)linear structures?

- Optimize the polynomial method for Keccak?

[^0]: ${ }^{2}$ https://keccak.team/crunchy_contest.html

