How to Find and Prove the Inverse of χ

Fukang Liu ${ }^{1}$, Santanu Sarkar ${ }^{2}$, Willi Meier ${ }^{3}$, Takanori Isobe ${ }^{4,5}$

${ }^{1}$ Tokyo Institute of Technology, Tokyo, Japan
${ }^{2}$ Indian Institute of Technology Madras, Chennai, India
${ }^{3}$ FHNW, Windisch, Switzerland
${ }^{4}$ University of Hyogo, Hyogo, Japan
${ }^{5}$ NICT, Tokyo, Japan
PBC 2023

Overview

1 Background

- Definition and Application of χ
- Previous Study on χ^{-1}

2 Our Work

- Motivation and Observations
- Deducing χ_{n}^{-1}
- Proving χ_{n}^{-1}

3 Summary
■ Conclusion

The χ_{n} Operation

■ Invented by Joan Daemen (Ph.D. thesis)

- Implementation: easy to mask \& high performance
- Applications: Keccak, Ascon, Rasta, Subterranean 2.0

Definition 1

For an odd integer $n \geq 3$, the n-bit nonlinear transform $\chi_{n}: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ is defined as

$$
\begin{equation*}
y_{i}=x_{i}+\overline{x_{i+1}} x_{i+2}, \quad i \in[0, n-1] \tag{1}
\end{equation*}
$$

where $X=\left(x_{0}, \ldots, x_{n-1}\right)$ and $Y=\left(y_{0}, \ldots, y_{n-1}\right)$ are input and output bits, respectively.

The Inverse of χ_{n}

- Proof of invertibility: seed-and-leap (Daemen's thesis)
$■$ Seed: Find an index j such that $y_{j+1}=1$. Then, $x_{j}=y_{j}$.
- Leap: If x_{j} is known, x_{j-2} can be found. Since n is an odd number, all $\left(x_{i}\right)_{0 \leq i \leq n-1}$ can be found by repeating this step.
- Correctness (from an algebraic perspective):

$$
\begin{aligned}
y_{j-2} & =x_{j-2}+\overline{x_{j-1}} x_{j}, \\
y_{j-1} & =x_{j-1}+\overline{x_{j}} x_{j+1}, \\
y_{j} & =x_{j}+\overline{x_{j+1}} x_{j+2}, \\
y_{j+1} & =x_{j+1}+\overline{x_{j+2}} x_{j+3},
\end{aligned}
$$

Seed: $\overline{x_{j+1}}=\overline{x_{j+2}} x_{j+3}$ if $y_{j+1}=1 \rightarrow \overline{x_{j+1}} x_{j+2}=0$

The Inverse of χ_{n}

> Degree of $\chi_{n}^{-1}:(n+1) / 2\left(\right.$ AC 2014^{1}, Biryukov et al. $)$
> 1: $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \leftarrow\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$
> 2: for $0 \leq i<\frac{3(n-1)}{2}$ do
> 3: $\quad x_{(n-2) i} \leftarrow x_{(n-2) i}+x_{(n-2) i+2} \cdot \overline{x_{(n-2) i+1}}$
> 4: end for
> 5: return $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$

[^0]
The Inverse of χ_{n}

A small example for χ_{9}^{-1} :

$$
\begin{array}{ll}
i=0: & x_{0}=y_{0}+y_{2} \overline{y_{1}}, \\
i=1: & x_{7}=y_{7}+x_{0} \overline{y_{8}}, \\
i=2: & x_{5}=y_{5}+x_{7} \overline{y_{6}}, \\
i=3: & x_{3}=y_{3}+x_{5} \overline{y_{4}} .
\end{array}
$$

Hence, the expression of x_{3} in terms of Y is

$$
x_{3}=y_{3}+\left(y_{5}+\left(y_{7}+\left(y_{0}+y_{2} \overline{y_{1}}\right) \overline{y_{8}}\right) \overline{y_{6}}\right) \overline{y_{4}} .
$$

The Inverse of χ_{n}

How the algorithm ends for χ_{9}^{-1} :

$$
\begin{aligned}
i=4: & x_{1}=y_{1}+x_{3} \overline{y_{2}} \\
i=5: & x_{8}=y_{8}+x_{1} \overline{x_{0}} \\
i=6: & x_{6}=y_{6}+x_{8} \overline{x_{7}} \\
i=7: & x_{4}=y_{4}+x_{6} \overline{x_{5}} \\
i=8: & x_{2}=y_{2}+x_{4} \overline{x_{3}} \\
i=9: & x_{0}=y_{0}+x_{2} \overline{x_{1}} \\
i=10: & x_{7}=y_{7}+x_{0} \overline{x_{8}} \\
i=11: & x_{5}=y_{5}+x_{7} \overline{x_{6}}
\end{aligned}
$$

The order to compute $\left(x_{0}, \ldots, x_{8}\right)$:

$$
x_{3} \rightarrow x_{1} \rightarrow x_{8} \rightarrow x_{6} \rightarrow \cdots \rightarrow x_{7} \rightarrow x_{5}
$$

The Inverse of χ_{n}

No explicit formula and the corresponding proof.
Too long to write down? (degree: $(n+1) / 2)$

Motivation

An efficient way to find low-degree equations for r-round Rasta ${ }^{2}$:

$$
P(Y)+\sum_{j=0}^{n-1} x_{j} L_{j}(Y)+c=0
$$

where $\operatorname{Deg}(P) \leq 2^{r-1}+1, \operatorname{Deg}\left(L_{j}\right) \leq 1$ and $c \in \mathbb{F}_{2}$ is a constant.
${ }^{2}$ Algebraic Attacks on Rasta and Dasta Using Low-Degree Equations

Observations

Low-degree equations found via experiments/observations:
$0=x_{i}+\overline{y_{i+1}} x_{i+2}+y_{i}$,
$0=y_{i+1}\left(x_{i}+y_{i}\right)$,
$0=y_{i+3}\left(x_{i}+y_{i}+y_{i+2} \overline{y_{i+1}}\right)$,
$0=y_{i+5}\left(x_{i}+x_{i+2}+y_{i}+y_{i+1} y_{i+2}+y_{i+1} \overline{y_{i+3}} y_{i+4}\right)$,
$0=y_{i+7}\left(x_{i}+y_{i}+y_{i+6} \overline{y_{i+5}} \overline{y_{i+3}} \overline{y_{i+1}}+y_{i+4} \overline{y_{i+3}} \overline{y_{i+1}}+y_{i+2} \overline{y_{i+1}}\right)$.

Observations

Observation 1

All these 5 polynomials belong to the ideal $\mathcal{I}=\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$, where

$$
\begin{equation*}
f_{i}=y_{i}+x_{i}+\overline{y_{i+1}} x_{i+2} \tag{2}
\end{equation*}
$$

Note that $f_{i}=0$ is a low-degree equation, i.e. $f_{i}=0$ holds for all (X, Y) satisfying $Y=\chi_{n}(X)$.

More such (linearly independent) polynomials in \mathcal{I} ?

Observations

Why do we need these polynomials?

Note 1

Note that for a polynomial $p_{i} \in \mathcal{I}$, by definition of an ideal, there must exist polynomials $h_{0}, \ldots, h_{n-1} \in \mathbb{F}_{2}[X, Y]$ such that

$$
p_{i}=\sum_{i=0}^{n-1} h_{i} f_{i}
$$

and hence $p_{i}=0$ holds for all (X, Y) satisfying $Y=\chi_{n}(X)$.
Especially, if p_{i} is also of the following form

$$
P(Y)+\sum_{j=0}^{n-1} x_{j} L_{j}(Y)+c
$$

it can be used for attacks on Rasta.

Observations

Initial Idea

Consider $x_{i} y_{i+j}$ and use the division algorithm to compute the remainder of $x_{i} y_{i+j} /\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$.

- case 1: $j=2 t$.
- case 2 : $j=2 t+1$.

Observations

Small examples (case 2): $i=0, j=2 t+1=7$

$$
x_{0} y_{7} /\left\langle f_{0}, f_{1}, \ldots, f_{n-1}\right\rangle, n \geq 9
$$

The procedure ${ }^{3}$ is to iteratively compute N_{i+1} and R_{i} :

$$
N_{i}=Q_{i} D_{i}+N_{i+1}+R_{i}
$$

where

$$
N_{0}=x_{0} y_{7}, D_{i} \in\left\{f_{0}, \ldots, f_{n-1}\right\}, R_{i} \in \mathbb{F}_{2}\left[y_{0}, y_{1}, \ldots, y_{n-1}\right] .
$$

Then, we know $N_{0}+\sum_{j=0}^{i} R_{j} \in \mathcal{I}$ if finally $N_{i+1}=0$, i.e. we expect that the remainder will finally be in $\mathbb{F}_{2}\left[y_{0}, y_{1}, \ldots, y_{n-1}\right]$.
${ }^{3} N_{i}$: numerator, $D_{i}:$ divisor, Q_{i} : quotient, $N_{i+1}+R_{i}$: remainder

Observations

i	N_{i}	D_{i}	Q_{i}	R_{i}
0	$x_{0} y_{7}$	$f_{0}=x_{0}+x_{2} y_{1}+x_{2}+y_{0}$	y_{7}	$y_{0} y_{7}$
1	$x_{2} y_{1} y_{7}+x_{2} y_{7}$	$f_{2}=x_{2}+x_{4} y_{3}+x_{4}+y_{2}$	$y_{1} y_{7}$	$y_{1} y_{2} y_{7}$
2	$x_{2} y_{7}+x_{4} y_{1} y_{3} y_{7}+x_{4} y_{1} y_{7}$	$f_{2}=x_{2}+x_{4} y_{3}+x_{4}+y_{2}$	y_{7}	$y_{2} y_{7}$
3	$x_{4} y_{1} y_{3} y_{7}+x_{4} y_{1} y_{7}$ $+x_{4} y_{3} y_{7}+x_{4} y_{7}$	$f_{4}=x_{4}+x_{6} y_{5}+x_{6}+y_{4}$	$y_{1} y_{3} y_{7}$	$y_{1} y_{3} y_{4} y_{7}$
4	$x_{4} y_{1} y_{7}+x_{4} y_{3} y_{7}+x_{4} y_{7}$ $+x_{6} y_{1} y_{3} y_{5} y_{7}+x_{6} y_{1} y_{3} y_{7}$	$f_{4}=x_{4}+x_{6} y_{5}+x_{6}+y_{4}$	$y_{1} y_{7}$	$y_{1} y_{4} y_{7}$
5	$x_{4} y_{3} y_{7}+x_{4} y_{7}+x_{6} y_{1} y_{3} y_{5} y_{7}$ $+x_{6} y_{1} y_{3} y_{7}+x_{6} y_{1} y_{5} y_{7}+x_{6} y_{1} y_{7}$	$f_{4}=x_{4}+x_{6} y_{5}+x_{6}+y_{4}$	$y_{3} y_{7}$	$y_{3} y_{4} y_{7}$
6	$x_{4} y_{7}+x_{6} y_{1} y_{3} y_{5} y_{7}+x_{6} y_{1} y_{3} y_{7}$ $+x_{6} y_{1} y_{5} y_{7}+x_{6} y_{1} y_{7}$ $+x_{6} y_{3} y_{5} y_{7}+x_{6} y_{3} y_{7}$	$f_{4}=x_{4}+x_{6} y_{5}+x_{6}+y_{4}$	y_{7}	$y_{4} y_{7}$
7	$x_{6} y_{1} y_{3} y_{5} y_{7}+x_{6} y_{1} y_{3} y_{7}$ $+x_{6} y_{1} y_{5} y_{7}+x_{6} y_{1} y_{7}+x_{6} y_{3} y_{5} y_{7}$ $+x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{1} y_{3} y_{5} y_{7}$	$y_{1} y_{3} y_{5} y_{6} y_{7}$

Observations

i	N_{i}	D_{i}	Q_{i}	R_{i}
8	$x_{6} y_{1} y_{3} y_{7}$ $+x_{6} y_{1} y_{5} y_{7}+x_{6} y_{1} y_{7}+x_{6} y_{3} y_{5} y_{7}$ $+x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{1} y_{3} y_{7}$	$y_{1} y_{3} y_{6} y_{7}$
9	$x_{6} y_{1} y_{5} y_{7}+x_{6} y_{1} y_{7}+x_{6} y_{3} y_{5} y_{7}$ $+x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{1} y_{5} y_{7}$	$y_{1} y_{5} y_{6} y_{7}$
10	$x_{6} y_{1} y_{7}+x_{6} y_{3} y_{5} y_{7}$ $+x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{1} y_{7}$	$y_{1} y_{6} y_{7}$
11	$x_{6} y_{3} y_{5} y_{7}$ $+x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{3} y_{5} y_{7}$	$y_{3} y_{5} y_{6} y_{7}$
12	$x_{6} y_{3} y_{7}+x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{3} y_{7}$	$y_{3} y_{6} y_{7}$
13	$x_{6} y_{5} y_{7}+x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	$y_{5} y_{7}$	$y_{5} y_{6} y_{7}$
14	$x_{6} y_{7}$	$f_{6}=x_{6}+x_{8} y_{7}+x_{8}+y_{6}$	y_{7}	$y_{6} y_{7}$
15	0			

Observations

$$
\begin{aligned}
x_{0} y_{7} & =y_{7} f_{0} \\
& +\left(y_{1} y_{7}+y_{7}\right) f_{2} \\
& +\left(y_{1} y_{3} y_{7}+y_{1} y_{7}+y_{3} y_{7}+y_{7}\right) f_{4} \\
& +\left(y_{1} y_{3} y_{5} y_{7}+y_{1} y_{3} y_{7}+y_{1} y_{5} y_{7}+y_{1} y_{7}+y_{3} y_{5} y_{7}+y_{3} y_{7}\right. \\
& \left.+y_{5} y_{7}+y_{7}\right) f_{6}+r_{n},
\end{aligned}
$$

where

$$
\begin{aligned}
r_{n} & =y_{7} y_{0} \\
& =\left(y_{1} y_{7}+y_{7}\right) y_{2} \\
& +\left(y_{1} y_{3} y_{7}+y_{1} y_{7}+y_{3} y_{7}+y_{7}\right) y_{4} \\
& +\left(y_{1} y_{3} y_{5} y_{7}+y_{1} y_{3} y_{7}+y_{1} y_{5} y_{7}\right. \\
& \left.+y_{1} y_{7}+y_{3} y_{5} y_{7}+y_{3} y_{7}+y_{5} y_{7}+y_{7}\right) y_{6} .
\end{aligned}
$$

Observations

Small examples (case 1): $i=1, j=2 t=4$

$$
x_{1} y_{5} /\left\langle f_{0}, f_{1}, \ldots, f_{6}\right\rangle
$$

i	N_{i}	D_{i}	Q_{i}	R_{i}
$0 \mid$	${ }_{x_{1} y_{5}}$	$f_{1}=x_{1}+x_{3} \overline{y_{2}}+y_{1} \mid$	y_{5}	$y_{1} \nu_{5}$
1	${ }_{3}{ }_{3} \bar{y}_{2} y_{5}$	$f_{3}=x_{3}+x_{5 \overline{4} 4}+y_{3} \mid$	$\overline{y_{2}} \mathrm{~V}_{5}$	$\overline{2}_{2} 2_{3} y_{5}$
$2 \mid$	${ }_{5} \overline{5}_{2} \overline{\bar{y}_{4}} y_{5}$	$f_{5}=x_{5}+x_{0}$ V/ $_{6}+y_{5}$	$\bar{y}_{2} y_{4} y_{5}$	$\bar{y}_{2} \bar{y}_{4} y_{5}$
$3 \mid$	$x_{0} \overline{V_{2}} \bar{y}_{4} \bar{y}_{5} \bar{y}_{6}$	$f_{0}=x_{0}+x_{2} \overline{y r}_{1}+y_{0} \mid$	$\bar{y}_{2} \overline{\bar{y}_{4}} \psi_{5} \overline{y_{6}}$	$y_{0} \overline{V_{2}} \bar{y}_{4} y_{5} \bar{y}_{V_{6}}$
4 \|	$x_{2} \overline{y_{1}} \overline{y_{2}} \overline{\bar{y}_{4} \psi_{5} \overline{y_{6}}}$	$f_{2}=x_{2}+x_{4} \overline{3}+y_{2} \mid$	$\overline{y_{1}} \overline{y_{2}} \overline{y_{4}} 4 y_{5} \bar{y}_{6}$	0
5 \|	$x_{4} \overline{V_{1}} \bar{y}_{2} \bar{y}_{3} \overline{\bar{J}_{4}} \nu_{5} \overline{V_{6}}$	$f_{4}=x_{4}+x_{6} \overline{V_{5}}+y_{4} \mid$	$\bar{y}_{1} \overline{y_{2}} \bar{y}_{3} \bar{y}_{4} \bar{y}_{5} \bar{y}_{6}$	0
6	0			

$$
\begin{aligned}
x_{1} y_{5} & =y_{1} y_{5}+\overline{y_{2}} y_{3} y_{5}+\overline{y_{2}} \overline{y_{4}} y_{5}+y_{0} \overline{y_{2}} \overline{y_{4}} y_{5} \overline{y_{6}} \\
& =y_{5}\left(y_{1}+\overline{y_{2}} y_{3}+\overline{y_{4}} y_{5}+y_{0} \overline{y_{2}} \overline{y_{4}} \overline{y_{6}}\right)
\end{aligned}
$$

Observations

■ Studying the remainder of $x_{i} y_{i+2 t+1} /\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$ may give us the formula of low-degree equations for Rasta.
■ Studying the remainder of $x_{i} y_{i+2 t} /\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$ may give us the formula of χ_{n}^{-1}.

If the formula of χ_{n}^{-1} is known, we should be able to know what $x_{i} y_{j}$ exactly is for any (i, j).

Lemma

Lemma 1

For a given pair (i, j) satisfying $i, j \in[0, n-1]$, if there exist $n+1$ polynomials $r_{0, i}, \ldots, r_{n, i} \in \mathbb{F}_{2}\left[y_{0}, y_{2}, \ldots, y_{n-1}\right]$ such that

$$
x_{i} y_{j}=\sum_{k=0}^{n-1} r_{k, i} f_{k}+r_{n, i}
$$

there must exist $n+1$ polynomials $r_{0, i+1}, \ldots, r_{n, i+1} \in \mathbb{F}_{2}\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ such that

$$
x_{i-2} y_{j}=\sum_{k=0}^{n-1} r_{k, i+1} f_{k}+r_{n, i+1}
$$

Proof

construct the term $x_{i-2} y_{j}$:

$$
\begin{aligned}
f_{i-2} & =x_{i-2}+x_{i} \overline{y_{i-1}}+y_{i-2} \\
x_{i-2} y_{j} & =y_{j} f_{i-2}+x_{i} y_{j} \overline{y_{i-1}}+y_{i-2} y_{j} \\
& =y_{j} f_{i-2}+\overline{y_{i-1}}\left(\sum_{k=0}^{n-1} r_{k, i} f_{k}+r_{n, i}\right)+y_{i-2} y_{j} \\
& =\left(y_{j}+\overline{y_{i-1}} r_{i-2, i}\right) f_{i-2}+\sum_{k=0, k \neq i-2}^{n-1} \overline{y_{i-1}} r_{k, i} f_{k} \\
& +\overline{y_{i-1}} r_{n, i}+y_{i-2} y_{j}
\end{aligned}
$$

Therefore, Lemma 1 is proved and we have

$$
r_{n, i+1}=\overline{y_{i-1}} r_{n, i}+y_{i-2} y_{j}
$$

Finding χ_{n}^{-1}

Let

$$
\begin{equation*}
h=(n-1) / 2 . \tag{3}
\end{equation*}
$$

Consider

$$
\begin{equation*}
x_{i-1} y_{i} / f_{i-1} \tag{4}
\end{equation*}
$$

Since

$$
f_{i-1}=x_{i-1}+x_{i+1} \overline{y_{i}}+y_{i-1}
$$

we have

$$
f_{i-1} y_{i}=x_{i-1} y_{i}+y_{i-1} y_{i}
$$

Finding χ_{n}^{-1}

Satisfy the condition of Lemma 1 :

$$
x_{i-1} y_{i}=x_{i+2 h} y_{i}=y_{i} f_{i-1}+y_{i-1} y_{i}
$$

So, the remainder of

$$
x_{i+2 h-2} y_{i}, \ldots, x_{i+2(h-j)} y_{i}, \ldots, x_{i+2(h-h-t)} y_{i}=x_{i-2} y_{i}
$$

divided by $\left\langle f_{0}, f_{1}, \ldots, f_{n-1}\right\rangle$ must be polynomials only in Y.

Finding χ_{n}^{-1}

Let

$$
x_{i+2(h-j)} y_{i}=\sum_{k=0}^{n-1} r_{k, j} f_{k}+r_{n, j}, j \in[0, h+t]
$$

The recursive relation in the Lemma:

$$
r_{n, j+1}=\overline{y_{i+2(h-j)-1}} r_{n, j}+y_{i+2(h-j)-2} y_{i}=\overline{y_{i-2 j-2}} r_{n, j}+y_{i-2 j-3} y_{i}
$$

where

$$
r_{n, 0}=y_{i-1} y_{i}
$$

Finding χ_{n}^{-1}

■ On the degree of $r_{n, j}$:
■ $\operatorname{Deg}\left(r_{n, 0}\right)=2, \operatorname{Deg}\left(r_{n, 1}\right)=3, \ldots, \operatorname{Deg}\left(r_{n, j}\right)=2+j$
■ Low-degree equations are found:

$$
\begin{aligned}
0 & =x_{i+2(h-j)} y_{i}+r_{n, j}=x_{i-1-2 j} y_{i}+r_{n, j}, \\
r_{n, j} & =\left(y_{i-1-2 j}+\sum_{u=1}^{j} y_{i-2 u+1} \prod_{k=u}^{j} \overline{y_{i-2 k}}\right) y_{i} .
\end{aligned}
$$

Finding χ_{n}^{-1}

$$
x_{i-1-2 j} y_{i}=\left(y_{i-1-2 j}+\sum_{u=1}^{j} y_{i-2 u+1} \prod_{k=u}^{j} \overline{y_{i-2 k}}\right) y_{i}
$$

So,

$$
x_{i-1-2 j}=y_{i-1-2 j}+\sum_{u=1}^{j} y_{i-2 u+1} \prod_{k=u}^{j} \overline{y_{i-2 k}} ? ? ?
$$

When will the formula become stable ???

Finding χ_{n}^{-1}

$$
x_{i-1-2 j}=y_{i-1-2 j}+\sum_{u=1}^{j} y_{i-2 u+1} \prod_{k=u}^{j} \overline{y_{i-2 k}}
$$

When $j=(n-1) / 2=h$, we have

$$
\begin{aligned}
& x_{i-1-2 h}=y_{i-1-2 h}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}} \\
\rightarrow & x_{i}=y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}} .
\end{aligned}
$$

Finding χ_{n}^{-1}

$$
x_{i}=y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}}
$$

■ initial analysis: $\operatorname{Deg}\left(r_{n, j}\right)$ becomes stable when $j \geq h$, i.e.
$\operatorname{Deg}\left(r_{n, j}\right)=h+1=(n+1) / 2$ for $j \geq h$.
■ this is the inverse of χ_{n} with a very high probability!

Finding χ_{n}^{-1}

- Why do we need to prove the correctness?
- Is the above deduction not tight?

Current Status

We proved that for any (X, Y) satisfying $Y=\chi_{n}(X)$, there is:

$$
\begin{equation*}
x_{i} y_{i+2 t}=\left(y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}}\right) y_{i+2 t} \tag{5}
\end{equation*}
$$

We do not know whether

$$
\begin{equation*}
x_{i}=\left(y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}}\right) \tag{6}
\end{equation*}
$$

will always hold. At least, it is not so obvious.

Proof Idea

Consider two equation systems E_{1} and E_{2} in terms of (X, Y) :

$$
\begin{aligned}
& E_{1}: y_{i}=x_{i}+\overline{x_{i+1}} x_{i+2}, \quad i \in[0, n-1], \\
& E_{2}: x_{i}=y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}}, i \in[0, n-1] .
\end{aligned}
$$

If $V\left(E_{1}\right)=V\left(E_{2}\right)$ where $V\left(E_{1}\right)$ and $V\left(E_{2}\right)$ denotes the set of solutions to E_{1} and E_{2}, the correctness is proved.

Trivial observations:
$\square\left|V\left(E_{1}\right)\right|=\left|V\left(E_{2}\right)\right|=2^{n}$ (size is the same).
■ If $V\left(E_{1}\right)=V\left(E_{2}\right)$, the invertibility is also proved.

- If proved, $\operatorname{Deg}\left(\chi_{n}^{-1}\right)=h+1=(n+1) / 2$.

Proof Idea

A common two-step proof:
■ Step 1: prove $V\left(E_{1}\right) \subseteq V\left(E_{2}\right)$

- Step 2: prove $V\left(E_{2}\right) \subseteq V\left(E_{1}\right)$

■ Direct proof: difficult

- introduce another equation system E_{3} :

$$
E_{3}: x_{i}+y_{i}+\overline{y_{i+1}} x_{i+2}=0, \quad i \in[0, n-1] .
$$

■ our finding: $V\left(E_{1}\right)=V\left(E_{3}\right) \backslash\left\{1^{n}, 0^{n}\right\}$, i.e. $V\left(E_{1}\right) \subseteq V\left(E_{3}\right)$
■ step 2: prove $V\left(E_{2}\right) \subseteq V\left(E_{3}\right)$ due to $\left\{1^{n}, 0^{n}\right\} \notin V\left(E_{2}\right)$.

- step 1: prove $V\left(E_{1}\right) \subseteq V\left(E_{2}\right)$.

Proving $V\left(E_{2}\right) \subseteq V\left(E_{3}\right)$

For any $(X, Y) \in V\left(E_{2}\right)$, we have

$$
\begin{aligned}
x_{i} & =y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}} \\
x_{i+2} & =y_{i+2}+\sum_{u=1}^{h} y_{i-2(u-1)+1} \prod_{k=u}^{h} \overline{y_{i-2(k-1)}} \\
& =y_{i+2}+\sum_{u=0}^{h-1} y_{i-2 u+1} \prod_{k=u}^{h-1} \overline{y_{i-2 k}}
\end{aligned}
$$

Proving $V\left(E_{2}\right) \subseteq V\left(E_{3}\right)$

$$
\begin{aligned}
x_{i+2} \overline{y_{i+1}} & =y_{i+2} \overline{y_{i+1}}+\overline{y_{i+1}} \sum_{u=0}^{h-1} y_{i-2 u+1} \prod_{k=u}^{h-1} \overline{y_{i-2 k}} \\
& =y_{i-2 h+1} \overline{y_{i-2 h}}+\overline{y_{i-2 h}} \sum_{u=0}^{h-1} y_{i-2 u+1} \prod_{k=u}^{h-1} \overline{y_{i-2 k}} \\
& =\sum_{u=0}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}} \\
& =y_{i+1} \prod_{k=0}^{h} \overline{y_{i-2 k}}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}} \\
& =x_{i}+y_{i}
\end{aligned}
$$

$* 2 h=n-1 \rightarrow i+2=i-2 h+1 \bmod n, i+1=i-2 h \bmod n$.

Proving $V\left(E_{1}\right) \subseteq V\left(E_{2}\right)$

The proof is a bit long. Basically, it is based on the proof by induction and proof by contradiction.

Conclusion

- The formula of χ_{n}^{-1} is found and can be written down in only one line:

$$
x_{i}=y_{i}+\sum_{u=1}^{h} y_{i-2 u+1} \prod_{k=u}^{h} \overline{y_{i-2 k}}
$$

- Finding and proving χ_{n}^{-1} highly relies on the ideal $\mathcal{I}=\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$. Underlying reasons? (unclear to me)
- Potential attacks based on this formula?

[^0]: ${ }^{1}$ Cryptographic Schemes Based on the ASASA Structure: Black-box, White-box, and Public-key

