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The χn Operation

Invented by Joan Daemen (Ph.D. thesis)

Implementation: easy to mask & high performance

Applications: Keccak, Ascon, Rasta, Subterranean 2.0

Definition 1

For an odd integer n ≥ 3, the n-bit nonlinear transform
χn : Fn

2 → Fn
2 is defined as

yi = xi + xi+1xi+2, i ∈ [0, n − 1] (1)

where X = (x0, . . . , xn−1) and Y = (y0, . . . , yn−1) are input and
output bits, respectively.
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The Inverse of χn

■ Proof of invertibility: seed-and-leap (Daemen’s thesis)

Seed: Find an index j such that yj+1 = 1. Then, xj = yj .

Leap: If xj is known, xj−2 can be found. Since n is an odd
number, all (xi )0≤i≤n−1 can be found by repeating this step.

■ Correctness (from an algebraic perspective):

yj−2 = xj−2 + xj−1xj ,

yj−1 = xj−1 + xjxj+1,

yj = xj + xj+1xj+2,

yj+1 = xj+1 + xj+2xj+3,

Seed: xj+1 = xj+2xj+3 if yj+1 = 1 → xj+1xj+2 = 0
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The Inverse of χn

Degree of χ−1
n : (n + 1)/2 (AC 20141, Biryukov et al.)

1: (x0, x1, . . . , xn−1)← (y0, y1, . . . , yn−1)

2: for 0 ≤ i < 3(n−1)
2 do

3: x(n−2)i ← x(n−2)i + x(n−2)i+2 · x(n−2)i+1

4: end for
5: return (x0, x1, . . . , xn−1)

1Cryptographic Schemes Based on the ASASA Structure: Black-box,
White-box, and Public-key
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The Inverse of χn

A small example for χ−1
9 :

i = 0 : x0 = y0 + y2y1,

i = 1 : x7 = y7 + x0y8,

i = 2 : x5 = y5 + x7y6,

i = 3 : x3 = y3 + x5y4.

Hence, the expression of x3 in terms of Y is

x3 = y3 + (y5 + (y7 + (y0 + y2y1)y8)y6)y4.
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The Inverse of χn

How the algorithm ends for χ−1
9 :

i = 4 : x1 = y1 + x3y2,

i = 5 : x8 = y8 + x1x0,

i = 6 : x6 = y6 + x8x7,

i = 7 : x4 = y4 + x6x5,

i = 8 : x2 = y2 + x4x3,

i = 9 : x0 = y0 + x2x1,

i = 10 : x7 = y7 + x0x8,

i = 11 : x5 = y5 + x7x6.

The order to compute (x0, . . . , x8) :

x3 → x1 → x8 → x6 → · · · → x7 → x5.
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The Inverse of χn

No explicit formula and the corresponding proof.

Too long to write down? (degree: (n + 1)/2)
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Motivation

A0,N,C A1,N,Cχn Ar,N,Cχnχn . . .K ⊕ Z

Forwards

Degree = 2r−1

Degree = 1

Degree = 1

Backwards

Degree = 2r−1 + 1

An efficient way to find low-degree equations for r -round Rasta2:

P(Y ) +
n−1∑
j=0

xjLj(Y ) + c = 0,

where Deg(P) ≤ 2r−1 + 1, Deg(Lj) ≤ 1 and c ∈ F2 is a constant.
2Algebraic Attacks on Rasta and Dasta Using Low-Degree Equations
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Observations

Low-degree equations found via experiments/observations:

0 = xi + yi+1xi+2 + yi ,

0 = yi+1(xi + yi ),

0 = yi+3(xi + yi + yi+2yi+1),

0 = yi+5(xi + xi+2 + yi + yi+1yi+2 + yi+1yi+3yi+4),

0 = yi+7(xi + yi + yi+6yi+5 yi+3 yi+1 + yi+4yi+3 yi+1 + yi+2yi+1).
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Observations

Observation 1

All these 5 polynomials belong to the ideal I = ⟨f0, . . . , fn−1⟩,
where

fi = yi + xi + yi+1xi+2. (2)

Note that fi = 0 is a low-degree equation, i.e. fi = 0 holds for all
(X ,Y ) satisfying Y = χn(X ).

More such (linearly independent) polynomials in I?
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Observations

Why do we need these polynomials?

Note 1

Note that for a polynomial pi ∈ I, by definition of an ideal, there
must exist polynomials h0, . . . , hn−1 ∈ F2[X ,Y ] such that

pi =
n−1∑
i=0

hi fi

and hence pi = 0 holds for all (X ,Y ) satisfying Y = χn(X ).

Especially, if pi is also of the following form

P(Y ) +
n−1∑
j=0

xjLj(Y ) + c ,

it can be used for attacks on Rasta.
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Observations

Initial Idea

Consider xiyi+j and use the division algorithm to compute the
remainder of xiyi+j/⟨f0, . . . , fn−1⟩.

case 1: j = 2t.

case 2: j = 2t + 1.
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Observations

Small examples (case 2): i = 0, j = 2t + 1 = 7

x0y7/⟨f0, f1, . . . , fn−1⟩, n ≥ 9.

The procedure3 is to iteratively compute Ni+1 and Ri :

Ni = QiDi + Ni+1 + Ri ,

where

N0 = x0y7, Di ∈ {f0, . . . , fn−1}, Ri ∈ F2[y0, y1, . . . , yn−1].

Then, we know N0 +
∑i

j=0 Rj ∈ I if finally Ni+1 = 0, i.e. we
expect that the remainder will finally be in F2[y0, y1, . . . , yn−1].

3Ni : numerator, Di : divisor, Qi : quotient, Ni+1 + Ri : remainder
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Observations

i Ni Di Qi Ri

0 x0y7 f0 = x0 + x2y1 + x2 + y0 y7 y0y7

1 x2y1y7 + x2y7 f2 = x2 + x4y3 + x4 + y2 y1y7 y1y2y7

2 x2y7 + x4y1y3y7 + x4y1y7 f2 = x2 + x4y3 + x4 + y2 y7 y2y7

3
x4y1y3y7 + x4y1y7 f4 = x4 + x6y5 + x6 + y4 y1y3y7 y1y3y4y7+x4y3y7 + x4y7

4
x4y1y7 + x4y3y7 + x4y7 f4 = x4 + x6y5 + x6 + y4 y1y7 y1y4y7+x6y1y3y5y7 + x6y1y3y7

5
x4y3y7 + x4y7 + x6y1y3y5y7 f4 = x4 + x6y5 + x6 + y4 y3y7 y3y4y7+x6y1y3y7 + x6y1y5y7 + x6y1y7

6
x4y7 + x6y1y3y5y7 + x6y1y3y7

f4 = x4 + x6y5 + x6 + y4 y7 y4y7+x6y1y5y7 + x6y1y7
+x6y3y5y7 + x6y3y7

7
x6y1y3y5y7 + x6y1y3y7

f6 = x6 + x8y7 + x8 + y6 y1y3y5y7 y1y3y5y6y7+x6y1y5y7 + x6y1y7 + x6y3y5y7
+x6y3y7 + x6y5y7 + x6y7
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Observations

i Ni Di Qi Ri

8
x6y1y3y7

f6 = x6 + x8y7 + x8 + y6 y1y3y7 y1y3y6y7+x6y1y5y7 + x6y1y7 + x6y3y5y7
+x6y3y7 + x6y5y7 + x6y7

9
x6y1y5y7 + x6y1y7 + x6y3y5y7 f6 = x6 + x8y7 + x8 + y6 y1y5y7 y1y5y6y7+x6y3y7 + x6y5y7 + x6y7

10
x6y1y7 + x6y3y5y7 f6 = x6 + x8y7 + x8 + y6 y1y7 y1y6y7+x6y3y7 + x6y5y7 + x6y7

11
x6y3y5y7 f6 = x6 + x8y7 + x8 + y6 y3y5y7 y3y5y6y7+x6y3y7 + x6y5y7 + x6y7

12 x6y3y7 + x6y5y7 + x6y7 f6 = x6 + x8y7 + x8 + y6 y3y7 y3y6y7

13 x6y5y7 + x6y7 f6 = x6 + x8y7 + x8 + y6 y5y7 y5y6y7

14 x6y7 f6 = x6 + x8y7 + x8 + y6 y7 y6y7

15 0
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Observations

x0y7 = y7f0

+ (y1y7 + y7)f2

+ (y1y3y7 + y1y7 + y3y7 + y7)f4

+ (y1y3y5y7 + y1y3y7 + y1y5y7 + y1y7 + y3y5y7 + y3y7

+ y5y7 + y7)f6 + rn,

where

rn = y7y0

= (y1y7 + y7)y2

+ (y1y3y7 + y1y7 + y3y7 + y7)y4

+ (y1y3y5y7 + y1y3y7 + y1y5y7

+ y1y7 + y3y5y7 + y3y7 + y5y7 + y7)y6.
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Observations

Small examples (case 1): i = 1, j = 2t = 4

x1y5/⟨f0, f1, . . . , f6⟩

i Ni Di Qi Ri

0 x1y5 f1 = x1 + x3y2 + y1 y5 y1y5

1 x3y2y5 f3 = x3 + x5y4 + y3 y2y5 y2y3y5

2 x5y2 y4y5 f5 = x5 + x0y6 + y5 y2 y4y5 y2 y4y5

3 x0y2 y4y5y6 f0 = x0 + x2y1 + y0 y2 y4y5y6 y0y2 y4y5y6

4 x2y1 y2 y4y5y6 f2 = x2 + x4y3 + y2 y1 y2 y4y5y6 0

5 x4y1 y2 y3 y4y5y6 f4 = x4 + x6y5 + y4 y1 y2 y3 y4y5y6 0

6 0

x1y5 = y1y5 + y2y3y5 + y2 y4y5 + y0y2 y4y5y6

= y5(y1 + y2y3 + y4y5 + y0y2 y4 y6)
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Observations

Studying the remainder of xiyi+2t+1/⟨f0, . . . , fn−1⟩ may give
us the formula of low-degree equations for Rasta.

Studying the remainder of xiyi+2t/⟨f0, . . . , fn−1⟩ may give us
the formula of χ−1

n .

If the formula of χ−1
n is known, we should be able to know what

xiyj exactly is for any (i , j).
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Lemma

Lemma 1

For a given pair (i , j) satisfying i , j ∈ [0, n − 1], if there exist n + 1
polynomials r0,i , . . . , rn,i ∈ F2[y0, y2, . . . , yn−1] such that

xiyj =
n−1∑
k=0

rk,i fk + rn,i ,

there must exist n + 1 polynomials
r0,i+1, . . . , rn,i+1 ∈ F2[y1, y2, . . . , yn] such that

xi−2yj =
n−1∑
k=0

rk,i+1fk + rn,i+1.
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Proof

construct the term xi−2yj :

fi−2 = xi−2 + xiyi−1 + yi−2,

xi−2yj = yj fi−2 + xiyjyi−1 + yi−2yj ,

= yj fi−2 + yi−1(
n−1∑
k=0

rk,i fk + rn,i ) + yi−2yj ,

= (yj + yi−1ri−2,i )fi−2 +
n−1∑

k=0,k ̸=i−2

yi−1rk,i fk

+ yi−1rn,i + yi−2yj .

Therefore, Lemma 1 is proved and we have

rn,i+1 = yi−1rn,i + yi−2yj .
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Finding χ−1n

Let

h = (n − 1)/2. (3)

Consider

xi−1yi/fi−1. (4)

Since

fi−1 = xi−1 + xi+1yi + yi−1,

we have

fi−1yi = xi−1yi + yi−1yi .
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Finding χ−1n

Satisfy the condition of Lemma 1:

xi−1yi = xi+2hyi = yi fi−1 + yi−1yi .

So, the remainder of

xi+2h−2yi , . . . , xi+2(h−j)yi , . . . , xi+2(h−h−t)yi = xi−2yi

divided by ⟨f0, f1, . . . , fn−1⟩ must be polynomials only in Y .
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Finding χ−1n

Let

xi+2(h−j)yi =
n−1∑
k=0

rk,j fk + rn,j , j ∈ [0, h + t]

The recursive relation in the Lemma:

rn,j+1 = yi+2(h−j)−1rn,j + yi+2(h−j)−2yi = yi−2j−2rn,j + yi−2j−3yi

where

rn,0 = yi−1yi .
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Finding χ−1n

■ On the degree of rn,j :

Deg(rn,0) = 2, Deg(rn,1) = 3, . . . , Deg(rn,j) = 2 + j

■ Low-degree equations are found:

0 = xi+2(h−j)yi + rn,j = xi−1−2jyi + rn,j ,

rn,j = (yi−1−2j +

j∑
u=1

yi−2u+1

j∏
k=u

yi−2k)yi .
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Finding χ−1n

xi−1−2jyi = (yi−1−2j +

j∑
u=1

yi−2u+1

j∏
k=u

yi−2k)yi .

So,

xi−1−2j = yi−1−2j +

j∑
u=1

yi−2u+1

j∏
k=u

yi−2k ???

When will the formula become stable ???
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Finding χ−1n

xi−1−2j = yi−1−2j +

j∑
u=1

yi−2u+1

j∏
k=u

yi−2k

When j = (n − 1)/2 = h, we have

xi−1−2h = yi−1−2h +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k

→ xi = yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k .
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Finding χ−1n

xi = yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k

initial analysis: Deg(rn,j) becomes stable when j ≥ h, i.e.
Deg(rn,j) = h + 1 = (n + 1)/2 for j ≥ h.

this is the inverse of χn with a very high probability!
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Finding χ−1n

■ Why do we need to prove the correctness?

Is the above deduction not tight?

Current Status

We proved that for any (X ,Y ) satisfying Y = χn(X ), there is:

xiyi+2t = (yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k)yi+2t . (5)

We do not know whether

xi = (yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k) (6)

will always hold. At least, it is not so obvious.

29 / 35



Proof Idea

Consider two equation systems E1 and E2 in terms of (X ,Y ):

E1 : yi = xi + xi+1xi+2, i ∈ [0, n − 1],

E2 : xi = yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k , i ∈ [0, n − 1].

If V (E1) = V (E2) where V (E1) and V (E2) denotes the set of
solutions to E1 and E2, the correctness is proved.

Trivial observations:

|V (E1)| = |V (E2)| = 2n (size is the same).

If V (E1) = V (E2), the invertibility is also proved.

If proved, Deg(χ−1
n ) = h + 1 = (n + 1)/2.

30 / 35



Proof Idea

A common two-step proof:

Step 1: prove V (E1) ⊆ V (E2)

Step 2: prove V (E2) ⊆ V (E1)

■ Direct proof: difficult

introduce another equation system E3:

E3 : xi + yi + yi+1xi+2 = 0, i ∈ [0, n − 1].

our finding: V (E1) = V (E3)\{1n, 0n}, i.e. V (E1) ⊆ V (E3)

step 2: prove V (E2) ⊆ V (E3) due to {1n, 0n} /∈ V (E2).

step 1: prove V (E1) ⊆ V (E2).
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Proving V (E2) ⊆ V (E3)

For any (X ,Y ) ∈ V (E2), we have

xi = yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k ,

xi+2 = yi+2 +
h∑

u=1

yi−2(u−1)+1

h∏
k=u

yi−2(k−1)

= yi+2 +
h−1∑
u=0

yi−2u+1

h−1∏
k=u

yi−2k
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Proving V (E2) ⊆ V (E3)

xi+2yi+1 = yi+2yi+1 + yi+1

h−1∑
u=0

yi−2u+1

h−1∏
k=u

yi−2k

= yi−2h+1yi−2h + yi−2h

h−1∑
u=0

yi−2u+1

h−1∏
k=u

yi−2k

=
h∑

u=0

yi−2u+1

h∏
k=u

yi−2k

= yi+1

h∏
k=0

yi−2k +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k

= xi + yi .

∗2h = n − 1→ i + 2 = i − 2h + 1 mod n, i + 1 = i − 2h mod n.
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Proving V (E1) ⊆ V (E2)

The proof is a bit long. Basically, it is based on the proof by
induction and proof by contradiction.
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Conclusion

The formula of χ−1
n is found and can be written down in only

one line:

xi = yi +
h∑

u=1

yi−2u+1

h∏
k=u

yi−2k .

Finding and proving χ−1
n highly relies on the ideal

I = ⟨f0, . . . , fn−1⟩. Underlying reasons? (unclear to me)

Potential attacks based on this formula?
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