How to Find and Prove the Inverse of χ

Fukang Liu¹, Santanu Sarkar², Willi Meier³, Takanori Isobe^{4,5}

¹Tokyo Institute of Technology, Tokyo, Japan

²Indian Institute of Technology Madras, Chennai, India

³FHNW, Windisch, Switzerland

⁴University of Hyogo, Hyogo, Japan

⁵NICT, Tokyo, Japan

PBC 2023

Overview

1 Background

- \blacksquare Definition and Application of χ
- \blacksquare Previous Study on χ^{-1}

2 Our Work

- Motivation and Observations
- Deducing χ_n^{-1}
- Proving χ_n^{-1}

3 Summary

Conclusion

- Invented by Joan Daemen (Ph.D. thesis)
- Implementation: easy to mask & high performance
- Applications: Keccak, Ascon, Rasta, Subterranean 2.0

Definition 1

For an odd integer $n \ge 3$, the *n*-bit nonlinear transform $\chi_n : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is defined as

$$y_i = x_i + \overline{x_{i+1}} x_{i+2}, \ i \in [0, n-1]$$
 (1)

where $X = (x_0, \ldots, x_{n-1})$ and $Y = (y_0, \ldots, y_{n-1})$ are input and output bits, respectively.

The Inverse of χ_n

- Proof of invertibility: **seed-and-leap** (Daemen's thesis)
 - **Seed**: Find an index j such that $y_{j+1} = 1$. Then, $x_j = y_j$.
 - Leap: If x_j is known, x_{j-2} can be found. Since n is an odd number, all (x_i)_{0≤i≤n-1} can be found by repeating this step.
- Correctness (from an algebraic perspective):

$$y_{j-2} = x_{j-2} + \overline{x_{j-1}}x_j,$$

$$y_{j-1} = x_{j-1} + \overline{x_j}x_{j+1},$$

$$y_j = x_j + \overline{x_{j+1}}x_{j+2},$$

$$y_{j+1} = x_{j+1} + \overline{x_{j+2}}x_{j+3},$$

Seed: $\overline{x_{j+1}} = \overline{x_{j+2}}x_{j+3}$ if $y_{j+1} = 1 \rightarrow \overline{x_{j+1}}x_{j+2} = 0$

Degree of χ_n^{-1} : (n+1)/2 (AC 2014¹, Biryukov et al.)

1:
$$(x_0, x_1, \dots, x_{n-1}) \leftarrow (y_0, y_1, \dots, y_{n-1})$$

2: for $0 \le i < \frac{3(n-1)}{2}$ do
3: $x_{(n-2)i} \leftarrow x_{(n-2)i} + x_{(n-2)i+2} \cdot \overline{x_{(n-2)i+1}}$
4: end for
5: return $(x_0, x_1, \dots, x_{n-1})$

¹Cryptographic Schemes Based on the ASASA Structure: Black-box, White-box, and Public-key

A small example for χ_9^{-1} :

<i>i</i> = 0 :	$x_0 = y_0 + y_2 \overline{y_1},$
i = 1 :	$x_7 = y_7 + x_0 \overline{y_8},$
<i>i</i> = 2 :	$x_5 = y_5 + x_7 \overline{y_6},$
<i>i</i> = 3 :	$x_3 = y_3 + x_5 \overline{y_4}.$

Hence, the expression of x_3 in terms of Y is

$$x_3 = y_3 + (y_5 + (y_7 + (y_0 + y_2\overline{y_1})\overline{y_8})\overline{y_6})\overline{y_4}.$$

The Inverse of χ_n

How the algorithm ends for χ_9^{-1} :

i = 4:	$x_1 = y_1 + x_3 \overline{y_2},$
<i>i</i> = 5 :	$x_8 = y_8 + x_1 \overline{x_0},$
<i>i</i> = 6 :	$x_6 = y_6 + x_8 \overline{x_7},$
<i>i</i> = 7 :	$x_4 = y_4 + x_6 \overline{x_5},$
<i>i</i> = 8 :	$x_2 = y_2 + x_4 \overline{x_3},$
<i>i</i> = 9 :	$x_0 = y_0 + x_2 \overline{x_1},$
<i>i</i> = 10 :	$x_7 = y_7 + x_0 \overline{x_8},$
i = 11:	$x_5 = y_5 + x_7 \overline{x_6}.$

The order to compute (x_0, \ldots, x_8) :

$$x_3 \rightarrow x_1 \rightarrow x_8 \rightarrow x_6 \rightarrow \cdots \rightarrow x_7 \rightarrow x_5.$$

No explicit formula and the corresponding proof. Too long to write down? (degree: (n + 1)/2)

Motivation

An efficient way to find low-degree equations for r-round Rasta²:

$$P(Y) + \sum_{j=0}^{n-1} x_j L_j(Y) + c = 0,$$

where $Deg(P) \leq 2^{r-1} + 1$, $Deg(L_j) \leq 1$ and $c \in \mathbb{F}_2$ is a constant.

²Algebraic Attacks on Rasta and Dasta Using Low-Degree Equations

Low-degree equations found via experiments/observations:

$$0 = x_i + \overline{y_{i+1}}x_{i+2} + y_i,$$

$$0 = y_{i+1}(x_i + y_i),$$

$$0 = y_{i+3}(x_i + y_i + y_{i+2}\overline{y_{i+1}}),$$

$$0 = y_{i+5}(x_i + x_{i+2} + y_i + y_{i+1}y_{i+2} + y_{i+1}\overline{y_{i+3}}y_{i+4}),$$

 $0 = y_{i+7}(x_i + y_i + y_{i+6}\overline{y_{i+5}} \ \overline{y_{i+3}} \ \overline{y_{i+1}} + y_{i+4}\overline{y_{i+3}} \ \overline{y_{i+1}} + y_{i+2}\overline{y_{i+1}}).$

All these 5 polynomials belong to the ideal $\mathcal{I} = \langle f_0, \dots, f_{n-1} \rangle$, where

$$f_i = y_i + x_i + \overline{y_{i+1}} x_{i+2}.$$
 (2)

Note that $f_i = 0$ is a low-degree equation, i.e. $f_i = 0$ holds for all (X, Y) satisfying $Y = \chi_n(X)$.

More such (linearly independent) polynomials in \mathcal{I} ?

Why do we need these polynomials?

Note 1

Note that for a polynomial $p_i \in \mathcal{I}$, by definition of an ideal, there must exist polynomials $h_0, \ldots, h_{n-1} \in \mathbb{F}_2[X, Y]$ such that

$$p_i = \sum_{i=0}^{n-1} h_i f_i$$

and hence $p_i = 0$ holds for all (X, Y) satisfying $Y = \chi_n(X)$.

Especially, if p_i is also of the following form

$$P(Y) + \sum_{j=0}^{n-1} x_j L_j(Y) + c,$$

it can be used for attacks on Rasta.

Initial Idea

Consider $x_i y_{i+j}$ and use the division algorithm to compute the remainder of $x_i y_{i+j} / \langle f_0, \ldots, f_{n-1} \rangle$.

Small examples (case 2): i = 0, j = 2t + 1 = 7

$$x_0y_7/\langle f_0, f_1, \ldots, f_{n-1} \rangle, \ n \geq 9.$$

The procedure³ is to iteratively compute N_{i+1} and R_i :

$$N_i = Q_i D_i + N_{i+1} + R_i,$$

where

$$N_0 = x_0 y_7, \ D_i \in \{f_0, \ldots, f_{n-1}\}, \ R_i \in \mathbb{F}_2[y_0, y_1, \ldots, y_{n-1}].$$

Then, we know $N_0 + \sum_{j=0}^{i} R_j \in \mathcal{I}$ if finally $N_{i+1} = 0$, i.e. we expect that the remainder will finally be in $\mathbb{F}_2[y_0, y_1, \dots, y_{n-1}]$.

 ${}^{3}N_{i}$: numerator, D_{i} : divisor, Q_{i} : quotient, $N_{i+1} + R_{i}$: remainder

i	Ni	Di	Qi	Ri
0	<i>x</i> ₀ <i>y</i> ₇	$f_0 = x_0 + x_2 y_1 + x_2 + y_0$	Ут	<i>Y</i> 0 <i>Y</i> 7
1	$x_2y_1y_7 + x_2y_7$	$f_2 = x_2 + x_4 y_3 + x_4 + y_2$	<i>y</i> 1 <i>y</i> 7	<i>y</i> 1 <i>y</i> 2 <i>y</i> 7
2	$x_2y_7 + x_4y_1y_3y_7 + x_4y_1y_7$	$f_2 = x_2 + x_4 y_3 + x_4 + y_2$	У7	y 2 y 7
3	$x_4y_1y_3y_7 + x_4y_1y_7 + x_4y_3y_7 + x_4y_7$	$f_4 = x_4 + x_6 y_5 + x_6 + y_4$	<i>y</i> 1 <i>y</i> 3 <i>y</i> 7	<i>y</i> 1 <i>y</i> 3 <i>y</i> 4 <i>y</i> 7
4	$x_4y_1y_7 + x_4y_3y_7 + x_4y_7$ + $x_6y_1y_3y_5y_7 + x_6y_1y_3y_7$	$f_4 = x_4 + x_6 y_5 + x_6 + y_4$	<i>Y</i> 1 <i>Y</i> 7	<i>y</i> 1 <i>y</i> 4 <i>y</i> 7
5	$\begin{array}{l} x_4y_3y_7 + x_4y_7 + x_6y_1y_3y_5y_7 \\ + x_6y_1y_3y_7 + x_6y_1y_5y_7 + x_6y_1y_7\end{array}$	$f_4 = x_4 + x_6 y_5 + x_6 + y_4$	<i>Y</i> 3 <i>Y</i> 7	<i>y</i> 3 <i>y</i> 4 <i>y</i> 7
6	$\begin{array}{r} x_{4}y_{7}+x_{6}y_{1}y_{3}y_{5}y_{7}+x_{6}y_{1}y_{3}y_{7}\\ +x_{6}y_{1}y_{5}y_{7}+x_{6}y_{1}y_{7}\\ +x_{6}y_{3}y_{5}y_{7}+x_{6}y_{3}y_{7}\end{array}$	$f_4 = x_4 + x_6 y_5 + x_6 + y_4$	Ут	<i>У</i> 4 <i>У</i> 7
7	$\begin{array}{r} x_6 y_1 y_3 y_5 y_7 + x_6 y_1 y_3 y_7 \\ + x_6 y_1 y_5 y_7 + x_6 y_1 y_7 + x_6 y_3 y_5 y_7 \\ + x_6 y_3 y_7 + x_6 y_5 y_7 + x_6 y_7 \end{array}$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> 1 <i>y</i> 3 <i>y</i> 5 <i>y</i> 7	<i>y</i> 1 <i>y</i> 3 <i>y</i> 5 <i>y</i> 6 <i>y</i> 7

i	N _i	Di	<i>Q</i> i	Ri
8	$\begin{array}{c} x_{6}y_{1}y_{3}y_{7} \\ +x_{6}y_{1}y_{5}y_{7} + x_{6}y_{1}y_{7} + x_{6}y_{3}y_{5}y_{7} \\ +x_{6}y_{3}y_{7} + x_{6}y_{5}y_{7} + x_{6}y_{7} \end{array}$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> 1 <i>y</i> 3 <i>y</i> 7	<i>Y</i> 1 <i>Y</i> 3 <i>Y</i> 6 <i>Y</i> 7
9	$\begin{array}{c} x_6y_1y_5y_7 + x_6y_1y_7 + x_6y_3y_5y_7 \\ + x_6y_3y_7 + x_6y_5y_7 + x_6y_5y_7 \end{array}$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> 1 <i>y</i> 5 <i>y</i> 7	<i>Y</i> 1 <i>Y</i> 5 <i>Y</i> 6 <i>Y</i> 7
10		$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	y ₁ y ₇	<i>y</i> 1 <i>y</i> 6 <i>y</i> 7
11	$\begin{array}{c} x_{6}y_{3}y_{5}y_{7} \\ +x_{6}y_{3}y_{7} + x_{6}y_{5}y_{7} + x_{6}y_{7}\end{array}$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> 3 <i>y</i> 5 <i>y</i> 7	<i>Y</i> 3 <i>Y</i> 5 <i>Y</i> 6 <i>Y</i> 7
12	$x_6y_3y_7 + x_6y_5y_7 + x_6y_7$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> ₃ <i>y</i> ₇	<i>У</i> 3 <i>У</i> 6 <i>У</i> 7
13	$x_6y_5y_7 + x_6y_7$	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<i>y</i> 5 <i>y</i> 7	<i>y</i> 5 <i>y</i> 6 <i>y</i> 7
14	x ₆ y ₇	$f_6 = x_6 + x_8 y_7 + x_8 + y_6$	<u>у</u> 7	<u>У</u> 6У7
15	0			

$$\begin{aligned} x_0 y_7 &= y_7 f_0 \\ &+ (y_1 y_7 + y_7) f_2 \\ &+ (y_1 y_3 y_7 + y_1 y_7 + y_3 y_7 + y_7) f_4 \\ &+ (y_1 y_3 y_5 y_7 + y_1 y_3 y_7 + y_1 y_5 y_7 + y_1 y_7 + y_3 y_5 y_7 + y_3 y_7 \\ &+ y_5 y_7 + y_7) f_6 + r_n, \end{aligned}$$

where

$$\begin{aligned} r_n &= y_7 y_0 \\ &= (y_1 y_7 + y_7) y_2 \\ &+ (y_1 y_3 y_7 + y_1 y_7 + y_3 y_7 + y_7) y_4 \\ &+ (y_1 y_3 y_5 y_7 + y_1 y_3 y_7 + y_1 y_5 y_7 \\ &+ y_1 y_7 + y_3 y_5 y_7 + y_3 y_7 + y_5 y_7 + y_7) y_6. \end{aligned}$$

Small examples (case 1): i = 1, j = 2t = 4

 $x_1y_5/\langle f_0, f_1, \ldots, f_6 \rangle$

i	Ni	D _i	Qi	R _i
0	<i>x</i> ₁ <i>y</i> ₅	$\big f_1 = x_1 + x_3 \overline{y_2} + y_1$	<i>y</i> 5	<i>y</i> ₁ <i>y</i> ₅
1	x3 <u>y2</u> y5	$ f_3 = x_3 + x_5 \overline{y_4} + y_3$	<u>y</u> 2y5	<u>y2</u> y3y5
2	$x_5\overline{y_2} \ \overline{y_4}y_5$	$\big f_5 = x_5 + x_0 \overline{y_6} + y_5$	$\overline{y_2} \ \overline{y_4} y_5$	$\overline{y_2} \ \overline{y_4} y_5$
3	$x_0\overline{y_2} \ \overline{y_4}y_5\overline{y_6}$	$\big f_0 = x_0 + x_2 \overline{y_1} + y_0$	$\overline{y_2} \ \overline{y_4} y_5 \overline{y_6}$	$y_0\overline{y_2}\ \overline{y_4}y_5\overline{y_6}$
4	$x_2\overline{y_1}\ \overline{y_2}\ \overline{y_4}y_5\overline{y_6}$	$ f_2 = x_2 + x_4 \overline{y_3} + y_2$	$\overline{y_1} \ \overline{y_2} \ \overline{y_4} y_5 \overline{y_6}$	0
5	$x_4\overline{y_1}\ \overline{y_2}\ \overline{y_3}\ \overline{y_4}y_5\overline{y_6}$	$\big f_4 = x_4 + x_6 \overline{y_5} + y_4$	$\overline{y_1} \ \overline{y_2} \ \overline{y_3} \ \overline{y_4} y_5 \overline{y_6}$	0
6	0			

 $\begin{aligned} x_1y_5 &= y_1y_5 + \overline{y_2}y_3y_5 + \overline{y_2} \ \overline{y_4}y_5 + y_0\overline{y_2} \ \overline{y_4}y_5\overline{y_6} \\ &= y_5(y_1 + \overline{y_2}y_3 + \overline{y_4}y_5 + y_0\overline{y_2} \ \overline{y_4} \ \overline{y_6}) \end{aligned}$

- Studying the remainder of *x_iy_{i+2t+1}/⟨f*₀,...,*f_{n-1}⟩ may give* us the formula of low-degree equations for Rasta.
- Studying the remainder of $x_i y_{i+2t}/\langle f_0, \ldots, f_{n-1} \rangle$ may give us the formula of χ_n^{-1} .

If the formula of χ_n^{-1} is known, we should be able to know what $x_i y_j$ exactly is for any (i, j).

Lemma

Lemma 1

For a given pair (i, j) satisfying $i, j \in [0, n-1]$, if there exist n+1 polynomials $r_{0,i}, \ldots, r_{n,i} \in \mathbb{F}_2[y_0, y_2, \ldots, y_{n-1}]$ such that

$$x_i y_j = \sum_{k=0}^{n-1} r_{k,i} f_k + r_{n,i},$$

there must exist n + 1 polynomials $r_{0,i+1}, \ldots, r_{n,i+1} \in \mathbb{F}_2[y_1, y_2, \ldots, y_n]$ such that

$$x_{i-2}y_j = \sum_{k=0}^{n-1} r_{k,i+1}f_k + r_{n,i+1}.$$

Proof

construct the term $x_{i-2}y_j$:

$$\begin{aligned} f_{i-2} &= x_{i-2} + x_i \overline{y_{i-1}} + y_{i-2}, \\ x_{i-2}y_j &= y_j f_{i-2} + x_i y_j \overline{y_{i-1}} + y_{i-2}y_j, \\ &= y_j f_{i-2} + \overline{y_{i-1}} (\sum_{k=0}^{n-1} r_{k,i} f_k + r_{n,i}) + y_{i-2}y_j, \\ &= (y_j + \overline{y_{i-1}} r_{i-2,i}) f_{i-2} + \sum_{k=0, k \neq i-2}^{n-1} \overline{y_{i-1}} r_{k,i} f_k \\ &+ \overline{y_{i-1}} r_{n,i} + y_{i-2}y_j. \end{aligned}$$

Therefore, Lemma 1 is proved and we have

$$r_{n,i+1} = \overline{y_{i-1}}r_{n,i} + y_{i-2}y_j.$$

Finding χ_n^{-1}

Let

$$h = (n-1)/2.$$
 (3)

Consider

$$x_{i-1}y_i/f_{i-1}$$
. (4)

Since

$$f_{i-1} = x_{i-1} + x_{i+1}\overline{y_i} + y_{i-1},$$

we have

$$f_{i-1}y_i = x_{i-1}y_i + y_{i-1}y_i.$$

Satisfy the condition of Lemma 1:

$$x_{i-1}y_i = x_{i+2h}y_i = y_if_{i-1} + y_{i-1}y_i.$$

So, the remainder of

$$x_{i+2h-2}y_i, \ldots, x_{i+2(h-j)}y_i, \ldots, x_{i+2(h-h-t)}y_i = x_{i-2}y_i$$

divided by $\langle f_0, f_1, \dots, f_{n-1} \rangle$ must be polynomials only in Y.

Let

$$x_{i+2(h-j)}y_i = \sum_{k=0}^{n-1} r_{k,j}f_k + r_{n,j}, \ j \in [0, h+t]$$

The recursive relation in the Lemma:

$$r_{n,j+1} = \overline{y_{i+2(h-j)-1}}r_{n,j} + y_{i+2(h-j)-2}y_i = \overline{y_{i-2j-2}}r_{n,j} + y_{i-2j-3}y_i$$

where

$$r_{n,0} = y_{i-1}y_i$$
.

On the degree of $r_{n,j}$: $Deg(r_{n,0}) = 2, Deg(r_{n,1}) = 3, \ldots, Deg(r_{n,j}) = 2 + j$

■ Low-degree equations are found:

$$0 = x_{i+2(h-j)}y_i + r_{n,j} = x_{i-1-2j}y_i + r_{n,j},$$

$$r_{n,j} = (y_{i-1-2j} + \sum_{u=1}^j y_{i-2u+1} \prod_{k=u}^j \overline{y_{i-2k}})y_i.$$

$$x_{i-1-2j}y_i = (y_{i-1-2j} + \sum_{u=1}^j y_{i-2u+1} \prod_{k=u}^j \overline{y_{i-2k}})y_i.$$

So,

$$x_{i-1-2j} = y_{i-1-2j} + \sum_{u=1}^{j} y_{i-2u+1} \prod_{k=u}^{j} \overline{y_{i-2k}} ???$$

When will the formula become stable ???

$$x_{i-1-2j} = y_{i-1-2j} + \sum_{u=1}^{j} y_{i-2u+1} \prod_{k=u}^{j} \overline{y_{i-2k}}$$

When j = (n-1)/2 = h, we have

$$x_{i-1-2h} = y_{i-1-2h} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}}$$

$$\to \quad x_i = y_i + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}}.$$

$$x_i = y_i + \sum_{u=1}^h y_{i-2u+1} \prod_{k=u}^h \overline{y_{i-2k}}$$

- initial analysis: $Deg(r_{n,j})$ becomes stable when $j \ge h$, i.e. $Deg(r_{n,j}) = h + 1 = (n+1)/2$ for $j \ge h$.
- this is the inverse of χ_n with a very high probability!

Why do we need to prove the correctness?

Is the above deduction not tight?

Current Status

We proved that for any (X, Y) satisfying $Y = \chi_n(X)$, there is:

$$x_{i}y_{i+2t} = (y_{i} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}})y_{i+2t}.$$
 (5)

We do not know whether

$$x_{i} = (y_{i} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}})$$
(6)

will always hold. At least, it is not so obvious.

Proof Idea

Consider two equation systems E_1 and E_2 in terms of (X, Y):

$$E_{1}: y_{i} = x_{i} + \overline{x_{i+1}} x_{i+2}, i \in [0, n-1],$$

$$E_{2}: x_{i} = y_{i} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}}, i \in [0, n-1].$$

If $V(E_1) = V(E_2)$ where $V(E_1)$ and $V(E_2)$ denotes the set of solutions to E_1 and E_2 , the correctness is proved.

Trivial observations:

- $|V(E_1)| = |V(E_2)| = 2^n$ (size is the same).
- If $V(E_1) = V(E_2)$, the invertibility is also proved.
- If proved, $Deg(\chi_n^{-1}) = h + 1 = (n+1)/2$.

Proof Idea

A common two-step proof:

- Step 1: prove $V(E_1) \subseteq V(E_2)$
- Step 2: prove $V(E_2) \subseteq V(E_1)$

■ Direct proof: difficult

• introduce another equation system E_3 :

$$E_3: x_i + y_i + \overline{y_{i+1}}x_{i+2} = 0, \ i \in [0, n-1].$$

• our finding: $V(E_1) = V(E_3) \setminus \{1^n, 0^n\}$, i.e. $V(E_1) \subseteq V(E_3)$ • step 2: prove $V(E_2) \subseteq V(E_3)$ due to $\{1^n, 0^n\} \notin V(E_2)$.

• step 1: prove $V(E_1) \subseteq V(E_2)$.

For any $(X, Y) \in V(E_2)$, we have

$$x_{i} = y_{i} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}},$$

$$x_{i+2} = y_{i+2} + \sum_{u=1}^{h} y_{i-2(u-1)+1} \prod_{k=u}^{h} \overline{y_{i-2(k-1)}}$$

$$= y_{i+2} + \sum_{u=0}^{h-1} y_{i-2u+1} \prod_{k=u}^{h-1} \overline{y_{i-2k}}$$

Proving $V(E_2) \subseteq V(E_3)$

$$\begin{aligned} x_{i+2}\overline{y_{i+1}} &= y_{i+2}\overline{y_{i+1}} + \overline{y_{i+1}} \sum_{u=0}^{h-1} y_{i-2u+1} \prod_{k=u}^{h-1} \overline{y_{i-2k}} \\ &= y_{i-2h+1}\overline{y_{i-2h}} + \overline{y_{i-2h}} \sum_{u=0}^{h-1} y_{i-2u+1} \prod_{k=u}^{h-1} \overline{y_{i-2k}} \\ &= \sum_{u=0}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}} \\ &= y_{i+1} \prod_{k=0}^{h} \overline{y_{i-2k}} + \sum_{u=1}^{h} y_{i-2u+1} \prod_{k=u}^{h} \overline{y_{i-2k}} \\ &= x_i + y_i. \end{aligned}$$

 $*2h = n - 1 \rightarrow i + 2 = i - 2h + 1 \mod n, i + 1 = i - 2h \mod n.$

The proof is a bit long. Basically, it is based on the proof by induction and proof by contradiction.

The formula of \(\chi_n^{-1}\) is found and can be written down in only one line:

$$x_i = y_i + \sum_{u=1}^h y_{i-2u+1} \prod_{k=u}^h \overline{y_{i-2k}}.$$

- Finding and proving χ_n^{-1} highly relies on the ideal $\mathcal{I} = \langle f_0, \ldots, f_{n-1} \rangle$. Underlying reasons? (unclear to me)
- Potential attacks based on this formula?