
Frank Denis @jedisct1 — PBC2023

Permutation-based APIs
A framework for future-proof cryptographic APIs.

Fastly Inc.

Where do APIs come from?

• Standards

• Specifications

• Reference implementations

• Very useful for implementers, in order to quickly understand what the
components are and how they relate to each other

But most implementations will
invent their own, idiomatic APIs

After a paper is released, we may quickly
see multiple standalone implementations

What’s the goal of dedicated APIs?

• To expose all the functionalities of a primitive. 
In a way that feels elegant in the context of that primitive.

• However, these APIs won’t be used much, because they don’t fit well within
the rest of the ecosystem. If not rewritten, implementations are going to be
merged into other projects, with their own APIs.

What people actually use

• General-purpose cryptographic libraries

• Cryptographic services from the Operating System

• APIs from cloud vendors

• Standard libraries from programming languages

• Company internal frameworks

Anything that doesn’t follow existing
conventions can be confusing

Are a and b assumed to be reduced (mod m)?

MulMod(a,b,m)

How a cryptographic library is built

• Start with the low-hanging fruits and the most common primitives

• Design an API that’s a perfect fit for what is implemented.

• Goal: to be good. To look good. Clean. With nice abstractions.

The good API

• Functions are grouped by categories

• Strong typing to enforce separation

• In a given category, everything is consistent

• Feels clean and satisfactory

• But time passes…

Parameters set doesn’t match the current API for hash functions

H(ctx,p,…)

What can we do?

• Add new functions for that special case? 
Ugly.

• Revamp the entire API to use one namespace per function? 
May be too late, and API surface would balloon.

• Only expose the lowest common denominator? 
Sad.

• Expose the lowest common denominator + additional functions? 
Redundant and confusing.

Where does that function fit?

H(ctx,k,len,…)

Doesn’t fit anywhere in APIs of general-purpose libraries

Permutation-based
cryptography?

Adding permutation-base cryptography

• Shall we make breaking changes to the current APIs?

• Introduce a new category and duplicate everything from other categories?

• What could we do if we could start over?

A virtual machine for C, C++, Zig, Go, Kotlin, Ruby, Rust, C#, …

WebAssembly

System calls

• Allow applications to interact with the kernel

• Critical API

• Has to be small

• Has to be secure

• Has to be stable

• Every system call must be carefully designed, with a long-term view.

WebAssembly hostcalls

• Allow applications to communicate with the WebAssembly runtime

• Small, well-defined, trusted APIs, that have to commit to long-term stability

• WASI: domain-specific sets of standard APIs

• WASI-Crypto

These APIs are not meant to be
directly used by applications

Symmetric cryptography API for
WebAssembly

Types
(Handles)

• symmetric_key 
key_handle = symmetric_key_import("SHA-256", bytes)

• symmetric_state

• symmetric_tag

Algorithms are strings
• key_handle = symmetric_key_import("SHA-256", bytes)

Creating a state

• state = symmetric_state_open(“HMAC/SHA-256”, 
 key_handle, options)

• options is a {string, integer|string|memory}map

• Allows new primitives to be added, and their custom features to be supported
without breaking changes.

Consistency between keys and
algorithms is always enforced

The complete symmetric crypto API

clone() absorb() squeeze() squeeze_tag()

squeeze_key() max_tag_len() encrypt() encrypt_detached()

decrypt() decrypt_detached() ratchet() tag_len()

tag_pull() tag_verify() close() reset()

Hash functions, XOF

• { absorb(), squeeze() }

MAC

• { absorb(), squeeze_tag() }

• Tag object can be copied or verified

HKDF

• Extract: { absorb(), squeeze_key() }

• Expand: { absorb(), squeeze() }

Password hashing

• Hash string: { absorb(), squeeze_tag() } 
Returned tag is a string that can be used to verify the input.

• KDF: { absorb(), squeeze() }

AEADs

• AEADs must support the following operations:

• absorb()

• max_tag_len()

• encrypt(), encrypt_detached(), decrypt(),
decrypt_detached()

• if padding is required, it is included in the tag

• Where’s the nonce?

Nonce is optional
Automatically generated if safe

Sessions are
supported 

out of the box

Required, recommended and optional algorithms

• Implementations are encouraged to support Xoodyak and Kyber

• Official test suite will include test for these.

Current status

• The API for permutation-based
cryptography is the API, not an
additional API

• API is small and comprehensive

• Yet extensible without breaking
changes

• Traditional APIs can easily be built
on top of it

• Developers understand it

• Makes permutation-based
cryptography more widely available

https://github.com/WebAssembly/wasi-crypto

Thanks!

https://github.com/WebAssembly/wasi-crypto

