Permutation-based APIs

A framework for future-proof cryptographic APIs.

Frank Denis @jediscti — PBC2023
Fastly Inc.

Where do APIs come from?

e Standards
e Specifications
 Reference implementations

* \ery useful for implementers, in order to quickly understand what the
components are and how they relate to each other

But most implementations will
Invent their own, idiomatic APlIs

After a paper Is released, we may quickly
see multiple standalone implementations

What’s the goal of dedicated APIs?

* Jo expose all the functionalities of a primitive.
In a way that feels elegant in the context of that primitive.

e However, these APIs won’t be used much, because they don’t fit well within
the rest of the ecosystem. If not rewritten, implementations are going to be
merged into other projects, with their own APIs.

What people actually use

* (General-purpose cryptographic libraries

* Cryptographic services from the Operating System
* APIs from cloud vendors

o Standard libraries from programming languages

 Company internal frameworks

Anything that doesn’t follow existing
conventions can be confusing

MulMod(a,b,m)

Are a and b assumed to be reduced (mod m)?

How a cryptographic library is built

o Start with the low-hanging fruits and the most common primitives
* Design an API that’s a perfect fit for what is implemented.

 (Goal: to be good. To look good. Clean. With nice abstractions.

The good API

* Functions are grouped by categories

» Strong typing to enforce separation

* |n a given category, everything is consistent
* Feels clean and satisfactory

e But time passes...

H(ctx,p,...

Parameters set doesn’t match the current API for hash functions

What can we do?

 Add new functions for that special case?
Ugly.

 Revamp the entire AP| to use one namespace per function?
May be too late, and API surface would balloon.

* Only expose the lowest common denominator?
Sad.

» Expose the lowest common denominator + additional functions?
Redundant and confusing.

H(ctx K, Ien

)

Permutation-based
cryptog raphy’?

n’t fit anywhere in APIs of general-purpose libra

Adding permutation-base cryptography

* Shall we make breaking changes to the current APIs?
* |Introduce a new category and duplicate everything from other categories?

e \What could we do if we could start over?

WebAssembly

A virtual machine for C, C++, Zig, Go, Kotlin, Ruby, Rust, C#, ...

System calls

* Allow applications to interact with the kernel

 Critical API
e Has to be small
e Has to be secure

e Has to be stable

* Every system call must be carefully designed, with a long-term view.

WebAssembly hostcalls

* Allow applications to communicate with the WebAssembly runtime
 Small, well-defined, trusted APIs, that have to commit to long-term stability
 WASI: domain-specific sets of standard APls

« WASI-Crypto

These APIs are not meant to be
directly used by applications

Symmetric cryptography API for
WebAssembly

Types

(Handles)

* symmetric_key
key handle

S e G il Re gmpn it ana a0, LU

 symmetric_state

Algorithms are strings

e key handle = symmetric key 1import ("SHA-256", bytes)

Creating a state

e state = symmetric state open (“HMAC/SHA-256",
key handle, options)

e optionsisa {string, integer|string|memory}map

* Allows new primitives to be added, and their custom features to be supported
without breaking changes.

Option name Description Type
context Context/domain for hash functions and XOFs Byte string
salt Salt for hash functions Byte string
nonce Nonce or IV for ciphers Byte string

memory_limit Memory limit in bytes for memory-hard KDFs Unsigned integer
ops_limit Computational cost for CPU-hard KDFs Unsigned integer
parallelism Number of threads to use Unsigned integer

buffer Scratch buffer for memory-hard KDFs Memory

Consistency between keys and
algorithms Is always enforced

The complete symmetric crypto API

clone () Slogonio) squeeze () sCueers telg)
Seeese ke icssutaiculcinge) encrypt () SRGE Ot et achocll
decrypt () decrypt detached() ratchet () EoGlalaeivdy
(BT 1 () Elgver 1ty () close () reset ()

Symmetric operations are performed by composing the following functions:
e symmetric_state_absorb() : absorb data into the state.

o Hash functions: adds data to be hashed.

o MAC functions: adds data to be authenticated.

o Tuplehash-like constructions: adds a new tuple to the state.

o Key derivation functions: adds to the IKM or to the subkey information.
o AEAD constructions: adds additional data to be authenticated.

o Stateful hash objects, permutation-based constructions: absorbs.

e symmetric_state_squeeze() : squeeze bytes from the state.

o Hash functions: this tries to output an out_len bytes digest from the absorbed data. The
hash function output will be truncated if necessary. If the requested size is too large, the
invalid len error code is returned.

o Key derivation functions: : outputs an arbitrary-long derived key.
o RNGs, DRBGs, stream ciphers:: outputs arbitrary-long data.

o Stateful hash objects, permutation-based constructions: squeeze.
Other kinds of algorithms MUST return invalid_operation instead.
For password-stretching functions, the function MAY return in_progress .

In that case, the guest SHOULD retry with the same parameters until the function completes.

Hash functions, XOF

J | gloserlo(), sScueeze () |

let mut out = [Qu8; 64];
let state_handle = symmetric_state_open('"SHA-256", None)?;
symmetric_state_absorb(state_handle, b"data")?;

- symmetric_state_absorb(state_handle, b"more_data")?;

' symmetric_state_squeeze(state_handle, &mut out)?;

MAC

gt clelcienael BT ISlegbicicliac wclel 0,

* Jag object can be copied or verified

B

let mut raw_tag = [Qu8; 64];

let key_handle = symmetric_key_import("HMAC/SHA-512", b"key")?; let state_handle = symmetric_state_open("HMAC/SHA-512", Some(key handle), None)?;
let state_handle = symmetric_state_open("HMAC/SHA-512", Some(key_handle), None)?; symmetric_state_absorb(state_handle, b"data")?;
symmetric_state_absorb(state_handle, b"data")?; symmetric_state_absorb(state_handle, b"more_data")?;
symmetric_state_absorb(state_handle, b"more_data")?; let computed_tag_handle = symmetric_state_squeeze_tag(state_handle)?;

let computed_tag_handle = symmetric_state_squeeze_tag(state_handle)?; symmetric_tag_verify(computed_tag_handle, expected_raw_tag)?;

symmetric_tag_pull(computed_tag_handle, &mut raw_tag)?;

HKDF

o Extract: { absorb (), squeeze key () }

e Expand: { absorb (), squeeze() }

let mut prk = vec![Qu8; 64];

let key_handle = symmetric_key_ import("HKDF-EXTRACT/SHA-512", b"key")?;

let state_handle = symmetric_state_open("HKDF-EXTRACT/SHA-512", Some(key_handle), None)?;
symmetric_state_absorb(state_handle, b"salt")?;

let prk_handle = symmetric_state_squeeze_key(state_handle, "HKDF-EXPAND/SHA-512")7;

let mut subkey = vec![0u8; 32];
let state_handle = symmetric_state_open("HKDF-EXPAND/SHA-512", Some(prk_handle), None)?;

symmetric_state_absorb(state_handle, b"info")?;
symmetric_state_squeeze(state_handle, &mut subkey)?;

Password hashing

o Hash string: { absorb (), squeeze tag() }
Returned tag is a string that can be used to verify the input.

e KDF: { absorb (), squeeze() }

let mut memory = vec![Qu8; 1_000 000 _000];

let options_handle = symmetric_options_open()?;
symmetric_options_set_guest_buffer(options_handle, "memory", &mut memory)?;
symmetric_options_set_u64(options_handle, "opslimit", 5)7;
symmetric_options_set_u64(options_handle, "parallelism", 8)7;

let state_handle = symmetric_state_open("ARGON2-ID-13", None, Some(options))?;
symmtric_state_absorb(state_handle, b"password")?;

let pw_str_handle = symmetric_state_squeeze_tag(state_handle)?;
let mut pw_str = vec![0u8; symmetric_tag_len(pw_str_handle)?];
symmetric_tag_pull(pw_str_handle, &mut pw_str)?;

AEADs

 AEADs must support the following operations:

s abaoro)
e max ad et l]

e encrypt (), encrypt detached(), decrypt(),
decrypt detached()

e |f padding is required, it is included in the tag

e Where’s the nonce?

Nonce is optional

Automatically generated if safe

let key_handle = symmetric_key_generate("AES-256-GCM-SIV", None)?;
Llet message = b'"test";
let mut nonce = [0Qu8; 24];

let state_handle = symmetric_state_open('"AES-256-GCM-SIV", Some(key_handle), None)?;

let nonce = symmetric_state_options_get(state_handle, "nonce")?;

let mut ciphertext = vec![0Qu8; message.len() + symmetric_state_max_tag_len(state_handle)?];

symmetric_state_absorb(state_handle, "additional data")?;
symmetric_state_encrypt(state_handle, &mut ciphertext, message)?;

Sessions are
supported
out of the box

Required, recommended and optional algorithms

* |mplementations are encouraged to support Xoodyak and Kyber

o Official test suite will include test for these.

The API for permutation-based
cryptography is the API, not an
additional API

APl is small and comprehensive

Yet extensible without breaking
changes

Traditional APIs can easily be built
on top of it

 Developers understand it

« Makes permutation-based
cryptography more widely available

Thanks!

https://github.com/WebAssembly/wasi-crypto

https://github.com/WebAssembly/wasi-crypto

