
The past, present, and utures
of Ascon parameterisation

Arne Padmos

$ whoami

Ridley & Lawler, 2014

Renaud et al., 2014

Ujinobu, 2020

Willis Ware, 1967Willis Ware, 1967

Guidelines for quantum-safe transport-layer encryption

These guidelines are written for an audience of architects responsible for specifying cryptographic

requirements. They can also be used in R&D and prototyping as well as for contract negotiations.

For a more general introduction, see NLNCSA’s brochure and our own factsheet. For further details,

follow NIST, ETSI, IETF, and ISO standardisation efforts and read publications by ENISA and TNO.

Our recommendations target the early adopters who follow our advice to apply quantum-safe

cryptography to ensure long-term confidentiality against store-and-decrypt attacks. Signatures are

not part of these guidelines as they are not vulnerable to such attacks. The guidelines recommend

hybrid key exchange to mitigate potential vulnerabilities in novel post-quantum algorithms and

implementations. Besides a list of algorithms and recommended parameters, this document also

contains some questions to ask when choosing implementations.

Combine traditional algorithms with quantum-safe key encapsulation

Key agreement should rely on multiple algorithms. For other purposes, apply established methods.

You should use algorithms that have stood the test of time and that are future-proof. However,

post-quantum cryptography is a new and fast-moving field. As such, ensure that you can quickly

replace any algorithms and implementations that you rely on – so-called cryptographic agility.

Use all of the following standard cryptographic algorithms
*
:

— AES-256-GCM or ChaCha20-Poly1305 (for bulk encryption)

— SHA-256 or SHA3-256 (for hashing, viz. key derivation)

— ECDSA-secp256r1 or Ed25519 (for certificate verification)

— ECDH-secp256r1 or ECDH-X25519 (for key exchange)

Combine these with at least one of the following quantum-safe key encapsulation mechanisms:

— FrodoKEM at level 3+ (frodokem976 or higher)

— Classic McEliece at level 3+ (mceliece460896 or higher)

— CRYSTALS-Kyber at level 5 (kyber1024)

Apply one of the following key derivation mechanisms to get a hybrid construction:

— Concatenation of shared secrets (as specified by NIST in SP 800-56C Rev. 2) using HKDF-256

— Cascade of shared secrets (as specified by ETSI in TS 103 744) using HKDF-256

Alternatively, protocol stacking is another possible approach, where at least one of the protocols

supports the standard cryptographic algorithms given above and where one or more protocols

provide a quantum-safe key encapsulation mechanism. In a situation where TLS is used as the

protocol that implements standard cryptographic algorithms, note our guidelines for TLS.

*
 Longer hash functions and elliptic curves of the same type can be used, e.g. of 384 or 512 bits.

*
 Note that other AEAD modes which use a synthetic IV are less brittle, but also less performant.

Disclaimer:
all opinions are my own

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

Department of the Army, 1985

EFF, 1998

NIST, 1999

Cache-timing attacks on AES

Daniel J. Bernstein !

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
djb@cr.yp.to

Abstract. This paper demonstrates complete AES key recovery from
known-plaintext timings of a network server on another computer. This
attack should be blamed on the AES design, not on the particular AES
library used by the server; it is extremely difficult to write constant-time
high-speed AES software for common general-purpose computers. This
paper discusses several of the obstacles in detail.

Keywords: side channels, timing attacks, software timing attacks, cache
timing, load timing, array lookups, S-boxes, AES

1 Introduction

This paper reports successful extraction of a complete AES key from a network
server on another computer. The targeted server used its key solely to encrypt
data using the OpenSSL AES implementation on a Pentium III.

The successful attack was a very simple timing attack. Presumably the same
technique can extract complete AES keys from the more complicated servers
actually used to handle Internet data, although the attacks will often require
extra timings to average out the effects of variable network delays.

Are attacks of this type limited to the Pentium III? No. Every chip I have
tested—an AMD Athlon, an Intel Pentium III, an Intel Pentium M, an IBM
PowerPC RS64 IV, and a Sun UltraSPARC III—has shown comparable levels of
OpenSSL AES timing variability. Presumably it is possible to carry out similar
attacks against software running on all of these CPUs. I chose to focus on the
Pentium III because the Pentium III is one of the most common CPUs in today’s
Internet servers.

Was there some careless mistake in the OpenSSL implementation of AES?
No. The problem lies in AES itself: it is extremely difficult to write constant-time

! The author was supported by the National Science Foundation under grant CCR–
9983950, and by the Alfred P. Sloan Foundation. Date of this document: 2005.04.14.
Permanent ID of this document: cd9faae9bd5308c440df50fc26a517b4. This is a
preliminary version meant to announce ideas; it will be replaced by a final version
meant to record the ideas for posterity. There may be big changes before the final
version. Future readers should not be forced to look at preliminary versions, unless
they want to check historical credits; if you cite a preliminary version, please repeat
all ideas that you are using from it, so that the reader can skip it.

NISTIR 8319

Review of the Advanced Encryption
Standard

 Nicky Mouha

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8319

How to cite this article:
Smid ME (2021) Development of the Advanced Encryption Standard.
J Res Natl Inst Stan 126:126024. https://doi.org/10.6028/jres.126.024

Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024

Journal of Research of the National Institute of Standards and Technology

1

Development of the Advanced Encryption
Standard

Miles E. Smid

Formerly: Computer Security Division,
National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

mesmid@verizon.net

Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication
discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic
algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the
U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s
development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the
Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and
Technology, where he was responsible for the AES development.

Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security
requirements, SKIPJACK.

Accepted: June 18, 2021

Published: August 16, 2021; Current Version: August 23, 2021

This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST.

https://doi.org/10.6028/jres.126.024

1. Introduction

In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it
was going to specify a new cryptographic algorithm standard for the protection of U.S. government and
commercial data. The current standard was showing signs of age and would not be up to the task of
providing strong security much longer. NIST could step aside and let some other entity manage the
development of new cryptographic standards, it could propose a short-term fix with a limited lifetime, or it
could establish a procedure to develop a completely new algorithm. In January 1997, NIST decided to
move forward with a proposal for developing an Advanced Encryption Standard (AES), which would be
secure enough to last well into the next millennium. In December of 2001, after five years of effort, the
finished standard was approved and published. The journey from initial concept to final standard was not
straightforward. This paper covers the motivation for the development of the AES, the process that was
followed, and the problems that were encountered and solved along the way. It documents a significant
milestone in the history of NIST’s computer security program, which will be celebrating its 50th
anniversary in 2022.

Morris Dworkin, 2001

A Note on NSA’s Dual Counter Mode of

Encryption

Pompiliu Donescu ! Virgil D. Gligor !! David Wagner ! ! !

pompiliu@eng.umd.edu gligor@eng.umd.edu daw@cs.berkeley.edu

September 28, 2001

Abstract. We show that both variants of the Dual Counter Mode of
encryption (DCM) submitted for consideration as an AES mode of op-
eration to NIST by M. Boyle and C. Salter of the NSA are insecure with
respect to both secrecy and integrity in the face of chosen-plaintext at-
tacks. We argue that DCM cannot be easily changed to satisfy its stated
performance goal and be secure. Hence repairing DCM does not appear
worthwhile.

1 Introduction

On August 1, 2001, M. Boyle and C. Salter of the NSA submitted two variants
of the Dual Counter Mode (DCM) of encryption [1] for consideration as an AES
mode of operation to NIST. The DCM goals are: (1) to protect both the secrecy
and integrity of IP packets (as this mode is intended to satisfy the security goals
of Jutla’s IAPM mode [4]), and (2) to avoid the delay required before commenc-
ing the decryption of out-of-order IP packets, thereby decreasing the decryption
latency of IAPM. DCM is also intended to allow high rates of encryption.

The authors argue that DCM satisfies the first goal because “an error in a
cipher block causes all data in the packet to fail the integrity check”. DCM ap-
pears to satisfy the second goal because it maintains a “shared secret negotiated
during the key exchange,” which avoids the delay inherent to the decryption of
a secret IV before the first out-of-order packet arrival can be decrypted. The
authors note correctly that Jutla’s IAPM mode does not satisfy their second
goal.

In this note, we show that both variants of DCM are insecure with respect
to both secrecy and integrity in the face of chosen-plaintext attacks. Further, we
argue that DCM cannot be easily changed to satisfy its stated performance goal
for the decryption of out-of-order packets and be secure. We conclude since other
proposed AES modes satisfy the proposed goals for DCM, even if repairing DCM
is possible, which we doubt, such an exercise does not appear to be worthwhile.

1 VDG Inc., 6009 Brookside Drive, Chevy Chase, MD 20815.
2 Electrical and Computer Engineering Department, University of Maryland, College

Park, Maryland 20742.
3 Computer Science Division, EECS Department, University of California Berkeley,

Berkeley, CA. 94720.

 4 JULY 2001

1

D U A L C O U N T E R M O D E
MIKE BOYLE

CHRIS SALTER

INTRODUCTION

For the past 18 months, the NSA has been developing a high-speed encryption mode for IP packets.
The mode that we designed is identical in many aspects to Jutla’s Integrity Aware Parallelizable Mode
(IAPM). There is one important difference in our proposal. In the IP world, a large number of
packets might arrive out of order. Integrity Aware Parallelizable Mode (IAPM) and the proposed
variations incur a large overhead for out of order packets[JU 01]. Each packet requires at least the
time to perform a full decryption to obtain an IV before decryption of the cipher can begin. This
note describes our solution to this problem.

First, we describe the basic mode and its features. We then describe how to implement this mode for
IPSec.

DUAL COUNTER MODE

Dual counter mode is a hybrid of ECB mode and counter mode. Let E represent encryption by a
codebook of width W. Let P1, P2, ..., Pj be j blocks of plaintext and let C1, C2, ..., Cj be the
corresponding ciphertext. Let f be a polynomial of degree W for a primitive linear feedback shift
register. Also, let {xi} be the sequence of fills generated by this polynomial. The first fill, x0, is a
secret shared between the two peers. This initial fill is most easily derived from the key exchange1.
Dual counter mode can be described as follows:

j = # of datablocks

For i = 1, ..., j

xi = f(xi-1)

Ci = E(Pi ⊕ xi) ⊕ xi

Quite likely the cipherblocks will travel in packets. If the packets arrive in order, the receiver does not
lose track of the fill needed to decrypt the cipher.

TWO IMPLEMENTATION M ODES

We knew that many implementers would want to verify the data integrity of packets. This mode has
the property that any change to a ciphertext block causes the decrypted plaintext to be garbled. Thus
it is easy to add a checksum to verify data integrity.

1 Of course, care should be taken in producing this value. For example, the designers of the key exchange for IPsec used
secure hashes such as SHA-1 to isolate keying material.

Cryptanalysis of OCB2

Akiko Inoue and Kazuhiko Minematsu

NEC Corporation, Japan
a-inoue@cj.jp.nec.com, k-minematsu@ah.jp.nec.com

Abstract. We present practical attacks against OCB2, an ISO-standard
authenticated encryption (AE) scheme. OCB2 is a highly-efficient block-
cipher mode of operation. It has been extensively studied and widely
believed to be secure thanks to the provable security proofs. Our attacks
allow the adversary to create forgeries with single encryption query of
almost-known plaintext. This attack can be further extended to powerful
almost-universal and universal forgeries using more queries. The source
of our attacks is the way OCB2 implements AE using a tweakable block-
cipher, called XEX⇤. We have verified our attacks using a reference code
of OCB2. Our attacks do not break the privacy of OCB2, and are not
applicable to the others, including OCB1 and OCB3.

Keywords: OCB, Authenticated Encryption, Cryptanalysis, Forgery,
XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that pro-
vides both confidentiality and authenticity of messages. Now it is widely accepted
that AE is a fundamental security tool for many practical applications, such as
TLS.

OCB is a blockcipher mode of operation for AE. It is one of the most cel-
ebrated schemes in the cryptography for its beautiful and innovative architec-
ture. OCB is very efficient. In fact, it is as efficient as encryption-only modes,
and is parallelizable. There are three versions of OCB. The first version (OCB1)
was proposed at ACM CCS 2001 by Rogaway et. al [RBBK01]. The second
one (OCB2) was proposed at Asiacrypt 2004 by Rogaway [Rog04a] (hereafter
Rog04), and the latest one (OCB3) was proposed at FSE 2011 by Krovetz and
Rogaway [KR11]. Each version of OCB has received significant attentions from
theory and practice. OCB1 was considered for the security mechanism of Wire-
less LAN (IEEE 802-11), OCB2 is standardized in ISO/IEC 19772:2009 [ISO09],
and OCB3 is in RFC 7253 [RFC14]. Moreover, OCB3 is a finalist of CAESAR
competition1. Various versions of OCB have been implemented in the crypto-
graphic libraries, such as Botan, BouncyCastle, LibTomCrypt, OpenSSL, SJCL
etc.
1 https://competitions.cr.yp.to/caesar.html

NIST, 2022

A Vulnerability in Implementations of SHA-3,
SHAKE, EdDSA, and Other NIST-Approved

Algorithms

Nicky Mouha1()[0000�0001�8861�782X]

and Christopher Celi2[0000�0001�9979�6819]

1 Strativia, Largo, MD, USA
nicky@mouha.be

2 National Institute of Standards and Technology, Gaithersburg, MD, USA
christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in several implementa-
tions of the Secure Hash Algorithm 3 (SHA-3) that have been released
by its designers. The vulnerability has been present since the final-round
update of Keccak was submitted to the National Institute of Standards
and Technology (NIST) SHA-3 hash function competition in January
2011, and is present in the eXtended Keccak Code Package (XKCP) of
the Keccak team. It a↵ects all software projects that have integrated
this code, such as the scripting languages Python and PHP Hypertext
Preprocessor (PHP). The vulnerability is a bu↵er overflow that allows
attacker-controlled values to be eXclusive-ORed (XORed) into memory
(without any restrictions on values to be XORed and even far beyond the
location of the original bu↵er), thereby making many standard protection
measures against bu↵er overflows (e.g., canary values) completely ine↵ec-
tive. First, we provide Python and PHP scripts that cause segmentation
faults when vulnerable versions of the interpreters are used. Then, we
show how this vulnerability can be used to construct second preimages
and preimages for the implementation, and we provide a specially con-
structed file that, when hashed, allows the attacker to execute arbitrary
code on the victim’s device. The vulnerability applies to all hash value
sizes, and all 64-bit Windows, Linux, and macOS operating systems, and
may also impact cryptographic algorithms that require SHA-3 or its vari-
ants, such as the Edwards-curve Digital Signature Algorithm (EdDSA)
when the Edwards448 curve is used. We introduce the Init-Update-Final
Test (IUFT) to detect this vulnerability in implementations.

Keywords: CVE-2022-37454 SHA-3 Keccak hash function vulner-
ability.

1 Introduction

A (cryptographic) hash function transforms a variable-length message into a
fixed-length output, referred to as a “message digest,” a “hash value,” or simply
a “hash.” This hash is intended to serve as a unique representative value of the

BlaKE12
We are proud to announce

Blazing-fast
KECCAK on
12 rounds.
BlaKE12 (/ˈbleɪki: twelv/), or KECCAK reduced
to 12 rounds, is a blazing-fast cryptographic
hash funcHon with a rock-solid security
foundaHon and suitable to a wide-range of
plaIorms.

Features:
• Secure – BlaKE12 uses a provably-secure

BlaKE12 https://blake12.org/

1 of 3 16/04/2023, 22:14

Keccak team, 2022

Gellman & Soltani, 2013

Snowden Disclosures

• News stories came out strongly suggesting that Dual
EC had a trapdoor inserted by NSA

• This put the previous discussions in an entirely new
light.

• We responded by:

• Issuing an ITL bulletin telling everyone to stop
using Dual EC DRBG until further notice.

• Putting all three 800-90 documents up for public
comment

John Kelsey, 2013

NIST Cryptographic Standards and Guidelines
Development Process

Report and Recommendations of the

Visiting Committee on Advanced Technology
of the National Institute of Standards and Technology

July 2014

NISTIR 7977

NIST Cryptographic Standards and
Guidelines Development Process

Cryptographic Technology Group

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.7977

And the Winner Is…

Argon2 by Alex Biryukov, Daniel Dinu, and Dmitry
Khovratovich, University of Luxemburg

Honourable mention for four other finalists

• Catena and Lyra2 for their detailed design and security analysis

• Makwa for its unique features

• yescrypt for its feature set and easy upgrade path from
scrypt

PHC Lessons Learned

Algorithm competitions, when parameterised appropriately,
work

• Collaborative evolution of new crypto mechanisms

Can be run in complete openness

• No need for behind-closed-doors deliberations or government
intervention

Dealing with hypothetical but practically irrelevant
weaknesses is a problem when the cost to mitigate is
significant

• Damned if you do, damned if you don’t

Peter Gutmann, 2015

Cryptographic competitions

Daniel J. Bernstein1,2

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607–7045, USA

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

Abstract. Competitions are widely viewed as the safest way to select
cryptographic algorithms. This paper surveys procedures that have been
used in cryptographic competitions, and analyzes the extent to which
those procedures reduce security risks.

Keywords: cryptography, competitions, DES, AES, eSTREAM, SHA-3,
CAESAR, NISTPQC, NISTLWC

1 Introduction

The CoV individual reports point out several shortcomings and pro-
cedural weaknesses that led to the inclusion of the Dual EC DRBG
algorithm in SP 800-90 and propose several steps to remedy them. . . .
The VCAT strongly encourages standard development through open
competitions, where appropriate. —“NIST Cryptographic Standards
and Guidelines Development Process: Report and Recommendations
of the Visiting Committee on Advanced Technology of the National
Institute of Standards and Technology” [107], 2014

Cryptographic competitions are not a panacea. DES, the output of the first
cryptographic competition, had an exploitable key size (see [47], [60], [113], [30],
and [52]), had an exploitable block size (see [78] and [29]), and at the same time
had enough denials of exploitability (see, e.g., [61], [46, Section 7], [63], and [1])
to delay the deployment of stronger ciphers for decades. As another example,
AES performance on many platforms relies on table lookups with secret indices
(“S-table” or “T-table” lookups), and these table lookups were claimed to be “not
vulnerable to timing attacks” (see [45, Section 3.3] and [83, Section 3.6.2]), but
this claim was incorrect (see [16] and [104]), and this failure continues to cause
security problems today (see, e.g., [39]). As a third example, SHA-3 was forced

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy—EXC 2092 CASA—
390781972 “Cyber Security in the Age of Large-Scale Adversaries”, by the U.S. Na-
tional Science Foundation under grant 1913167, and by the Cisco University Research
Program. “Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation” (or other funding agencies). Permanent ID of this
document: b7af715576cc229aaf8c532ea89bb6ace1c91a65. Date: 2020.12.25.

Research Assurance

— ⇤⌅⇧⌃⌅⌥⇤� ⇧⇤⌅⌦⌦↵ �↵ —
��✏⇣�✏ � ⌥⇤↵ �⌅⌘ �↵⌥✓↵↵ ◆⌅⌃✏ � ⌅ ⇣ ��↵⌅⌃✏ �

Arne Padmos

Context. Compared to the popularity of both hackathons and CTF challenges, as
well as the impact that AES has had and that NIST’s PQC selection is expected to
have, very little research has been done on what we call, for lack of an established
term, adversarial engineering design competitions. This is unfortunate, as such
competitions appear to be a useful tool for assured technology transfer. Given that
NIST will review their guidelines for cryptographic standards development this
year, it would be opportune as a WEIS community to explore and provide insights
into how the shape of competitions can influence incentives and drive assurance.

Challenge. Can we use competitions to improve the state of security, and if so, how
might we structure competitions to include both defensive and o;ensive aspects in
order to bridge the divide between the making and breaking of computer systems?

Concept. Competitions that focus on breaking stu; are a common occurrence at
many security conferences, reflecting our field’s focus on looking for problems
over working on structural solutions. While some competitions focus on security
by design, an extensive literature search indicates that there is very little e;ort
around combining both building and breaking of systems. The call for hackathon
challenges at WEIS is a case in point, in that it only mentions the generation of
ideas and not a concurrent adversarial process for evaluating their e;ectiveness.
As to the few competitions that do combine o;ence and defence, most are more
like implementation challenges than design challenges. We propose exploring how
the idea of adversarial engineering design competitions, charrettes, or sprints can
incentivise and align both security engineering and assurance e;orts. Maybe these
ideas could even apply to policy problems, inspiring future WEIS hackathons.

Audience. Security economics and related fields seem to be very fitting disciplines
for providing input on di;erent options as to the shape of adversarial engineering
design competitions, including potential trade-o;s and relevant frameworks. Such
competitions might also be a rich field for gathering insights into, and testing the
predictions of, the e;ects of incentive structures on security outcomes, helping to
put security economics on a more solid empirical foundation. Both the limited
research into competition dynamics as well as the potential for enabling research
with broader relevance should make the topic an interesting challenge for security
economists and researchers from related fields to contribute to. Those that have
experience with security evaluation and/or standardisation processes, whether in
technical or policy domains, should also be able to provide valuable input.

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

PRESENT: An Ultra-Lightweight Block Cipher

A. Bogdanov1, L.R. Knudsen2, G. Leander1, C. Paar1, A. Poschmann1,
M.J.B. Robshaw3, Y. Seurin3, and C. Vikkelsoe2

1 Horst-Görtz-Institute for IT-Security, Ruhr-University Bochum, Germany
2 Technical University Denmark, DK-2800 Kgs. Lyngby, Denmark

3 France Telecom R&D, Issy les Moulineaux, France
leander@rub.de, {abogdanov,cpaar,poschmann}@crypto.rub.de

lars@ramkilde.com, chv@mat.dtu.dk

{matt.robshaw,yannick.seurin}@orange-ftgroup.com

Abstract. With the establishment of the AES the need for new block
ciphers has been greatly diminished; for almost all block cipher appli-
cations the AES is an excellent and preferred choice. However, despite
recent implementation advances, the AES is not suitable for extremely
constrained environments such as RFID tags and sensor networks. In
this paper we describe an ultra-lightweight block cipher, present. Both
security and hardware efficiency have been equally important during the
design of the cipher and at 1570 GE, the hardware requirements for
present are competitive with today’s leading compact stream ciphers.

1 Introduction

One defining trend of this century’s IT landscape will be the extensive deploy-
ment of tiny computing devices. Not only will these devices feature routinely in
consumer items, but they will form an integral part of a pervasive — and unseen
— communication infrastructure. It is already recognized that such deployments
bring a range of very particular security risks. Yet at the same time the cryp-
tographic solutions, and particularly the cryptographic primitives, we have at
hand are unsatisfactory for extremely resource-constrained environments.

In this paper we propose a new hardware-optimized block cipher that has
been carefully designed with area and power constraints uppermost in our mind.
Yet, at the same time, we have tried to avoid a compromise in security. In
achieving this we have looked back at the pioneering work embodied in the
DES [34] and complemented this with features from the AES finalist candidate
Serpent [4] which demonstrated excellent performance in hardware.

At this point it would be reasonable to ask why we might want to design a
new block cipher. After all, it has become an “accepted” fact that stream ciphers
are, potentially, more compact. Indeed, renewed efforts to understand the design
of compact stream ciphers are underway with the eSTREAM [15] project and
several promising proposals offer appealing performance profiles. But we note a
couple of reasons why we might want to consider a compact block cipher. First,
a block cipher is a versatile primitive and by running a block cipher in counter

Grain - A Stream Cipher for Constrained

Environments

Martin Hell1, Thomas Johansson1 and Willi Meier2

1 Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

{martin,thomas}@it.lth.se
2 FH Aargau, CH-5210 Windisch, Switzerland

meierw@fh-aargau.ch

Abstract. A new stream cipher, Grain, is proposed. The design tar-
gets hardware environments where gate count, power consumption and
memory is very limited. It is based on two shift registers and a nonlinear
output function. The cipher has the additional feature that the speed
can be increased at the expense of extra hardware. The key size is 80
bits and no attack faster than exhaustive key search has been identified.
The hardware complexity and throughput compares favourably to other
hardware oriented stream ciphers like E0 and A5/1.

1 Motivation

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g. speed, security and simplicity.
Comparing several ciphers, it is likely that one is faster on a 32 bit processor,
another is faster on an 8 bit processor and yet another one is faster in hardware.
The simplicity of the design is another factor that has to be taken into account,
but while the software implementation can be very simple, the hardware imple-
mentation might be quite complex.

There is a need for cryptographic primitives that have very low hardware
complexity. An RFID tag is a typical example of a product where the amount of
memory and power is very limited. These are microchips capable of transmitting
an identifying sequence upon a request from a reader. Forging an RFID tag can
have devastating consequences if the tag is used e.g. in electronic payments and
hence, there is a need for cryptographic primitives implemented in these tags.
Today, a hardware implementation of e.g. AES on an RFID tag is not feasible
due to the large number of gates needed. Grain is a stream cipher primitive that
is designed to be very easy and small to implement in hardware.

Many stream ciphers are based on linear feedback shift registers (LFSR), not
only for the good statistical properties of the sequences they produce, but also for
the simplicity and speed of their hardware implementation. Several recent LFSR
based stream cipher proposals, see e.g. [6, 7] and their predecessors, are based on
word oriented LFSRs. This allows them to be efficiently implemented in software

What’s needed in the IoT era is not more Kirtland’s
warblers and koalas, as wonderul as such animals
may be, but crows and coyotes. An animal that eats
only eucalyptus leaves, even if it outcompetes the
koala, will never become widely distributed.

National Security Agency, 2015

The Simon and Speck Families of
Lightweight Block Ciphers

Ray Beaulieu
Douglas Shors

Jason Smith
Stefan Treatman-Clark

Bryan Weeks
Louis Wingers

National Security Agency
9800 Savage Road, Fort Meade, MD 20755, USA

{rabeaul, djshors, jksmit3, sgtreat, beweeks, lrwinge}@tycho.ncsc.mil

19 June 2013

Abstract

In this paper we propose two families of block ciphers, Simon and Speck, each
of which comes in a variety of widths and key sizes. While many lightweight
block ciphers exist, most were designed to perform well on a single platform
and were not meant to provide high performance across a range of devices. The
aim of Simon and Speck is to fill the need for secure, flexible, and analyzable
lightweight block ciphers. Each o↵ers excellent performance on hardware and
software platforms, is flexible enough to admit a variety of implementations on
a given platform, and is amenable to analysis using existing techniques. Both
perform exceptionally well across the full spectrum of lightweight applications,
but Simon is tuned for optimal performance in hardware, and Speck for optimal
performance in software.

This paper is a product of the NSA Research Directorate, and the algorithms presented are free from any intellectual
property restrictions. This release does not constitute an endorsement of these algorithms for o�cial use.

Chapter 4
An Account of the ISO/IEC
Standardization of the Simon and Speck
Block Cipher Families

Tomer Ashur and Atul Luykx

Abstract Simon and Speck are two block cipher families published in 2013
by the US National Security Agency (NSA). These block ciphers, targeting
lightweight applications, were suggested in 2015 to be included in ISO/IEC 29192-2
Information technology—Security techniques—Lightweight cryptography—Part 2:
Block ciphers. Following 3.5 years of deliberations within ISO/IEC JTC 1 they
were rejected in April 2018. This chapter provides an account of the ISO/IEC
standardization process for Simon and Speck.

4.1 Introduction

By their very nature, cryptographic algorithms require large-scale agreement to
enable secure communication. Standardization by bodies such as ANSI, IEEE,
and ISO/IEC is important means by which industries and governments achieve
such agreement. The standardization process can be effective for agreeing upon
trustworthy, secure, and efficient cryptographic algorithms when conducted in the
open, as was the case with AES [444]. Yet opaque standardization processes lend
themselves to subversion, as exemplified by Dual-EC [472].

In recent years, standardization bodies have initiated projects to understand
the need for lightweight cryptographic algorithms. We shed light on the ISO/IEC
standardization process, one not well understood by the general public, by delving
into how cryptographic algorithms are scrutinized and determined to be fit for
standardization. To this end, we present a chronological description of the events
that led to removal of the NSA block ciphers Simon and Speck [64] from

T. Ashur (!)
imec-COSIC, KU Leuven, Leuven, Belgium

TU Eindhoven, Eindhoven, The Netherlands
e-mail: tomer.ashur@esat.kuleuven.be

A. Luykx
imec-COSIC, KU Leuven, Leuven, Belgium

© The Author(s) 2021
G. Avoine, J. Hernandez-Castro (eds.), Security of Ubiquitous Computing Systems,
https://doi.org/10.1007/978-3-030-10591-4_4

63

 NIST Cybersecurity White Paper csrc.nist.gov

Profiles for the Lightweight Cryptography

Standardization Process

Larry Bassham
Çağdaş Çalık
Kerry McKay
Nicky Mouha
Meltem Sönmez Turan

Computer Security Division
Information Technology Laboratory

April 26, 2017

NISTIR 8114

Report on Lightweight Cryptography

Kerry A. McKay
Larry Bassham

Meltem Sönmez Turan
Nicky Mouha

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8114

Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process

Table of contents

1 Introduction...2
2 Requirements of Submission Packages..3

2.1 Cover Sheet ...3

2.2 Algorithm Specification and Supporting Documentation..3

2.3 Source Code and Test Vectors ...4

2.4 Intellectual Property Statements / Agreements / Disclosures4

2.4.1 Statement by Each Submitter ...5

2.4.2 Statement by Patent (and Patent Application) Owner(s) ...6

2.4.3 Statement by Reference/Optimized/Additional Implementations’ Owner(s)7

3 Minimum Acceptability Requirements ..7
3.1 AEAD Requirements ...7

3.2 Hash Function Requirements ...8

3.3 Additional Requirements for Submissions with AEAD and Hashing........................9

3.4 Design Requirements...9

3.5 Implementation Requirements ...10

3.5.1 AEAD ...10

3.5.2 Hash Function..13

4 Evaluation Criteria ..14
4.1 Minimum Acceptability of the Submission ..14

4.2 Side Channel and Fault Attack Resistance ...14

4.3 Cost ...15

4.4 Performance ..15

4.5 Third-party Analysis..15

4.6 Suitability for Hardware and Software Implementations ..15

5 Evaluation Process ..15

1

NISTIR�8369�

Status�Report�on�the�Second�Round�of�
the�NIST�Lightweight�Cryptography�

Standardization�Process�

Meltem�Sönmez�Turan�
Kerry�McKay�

Donghoon�Chang�
Ç� gdas� ¸a˘� ¸�Calık�

Lawrence�Bassham�
Jinkeon�Kang�

John�Kelsey�

This�publication�is�available�free�of�charge�from:�
https://doi.org/10.6028/NIST.IR.8369�

NISTIR�8369�

Status�Report�on�the�Second�Round�of�
the�NIST�Lightweight�Cryptography�

Standardization�Process�

Meltem�Sönmez�Turan�
Kerry�McKay�

Donghoon�Chang�
Ç� gdas� ¸a˘� ¸�Calık�

Lawrence�Bassham�
Jinkeon�Kang�

John�Kelsey�

This�publication�is�available�free�of�charge�from:�
https://doi.org/10.6028/NIST.IR.8369�

NISTIR 8268

Status Report on the First Round of the
NIST Lightweight Cryptography

Standardization Process

Meltem Sönmez Turan
Kerry A. McKay

Çağdaş Çalık
Donghoon Chang

Larry Bassham

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8268

NISTIR�8369�

Status�Report�on�the�Second�Round�of�
the�NIST�Lightweight�Cryptography�

Standardization�Process�

Meltem�Sönmez�Turan�
Kerry�McKay�

Donghoon�Chang�
Ç� gdas� ¸a˘� ¸�Calık�

Lawrence�Bassham�
Jinkeon�Kang�

John�Kelsey�

This�publication�is�available�free�of�charge�from:�
https://doi.org/10.6028/NIST.IR.8369�

?

Helmut Lunghammer, 2023

IVkKkN

pa

Initialization

0⇤kK

A1
r

pb
c

As
r

pb
c

Associated Data

0⇤k1

P1C1
r

c
pb

Pt�1 Ct�1
r

c
pb

Plaintext

Pt Ct
r

c

Kk0⇤

pa

Finalization

K

T

128

Dobraunig et al., 2021

IVkKkN

pa

Initialization

0⇤kK

A1
r

pb
c

As
r

pb
c

Associated Data

0⇤k1

P1C1
r

c
pb

Pt�1 Ct�1
r

c
pb

Ciphertext

Pt Ct
r

c

Kk0⇤

pa

Finalization

K

T

128

Dobraunig et al., 2021

IVk0c

pa

Initialization

M1
r

pb
c

Ms�1
r

pb
c

Absorb Message

Ms
r

c
pa

H1
r

pb
c

Hd`/re
r

pb
c

Squeeze Hash

Dobraunig et al., 2021

Table 2: Parameters for recommended Pseudorandom Functions (PRF) andMes-

sage Authentication Codes (MAC). Unlimited input/output lengths (‘un-
lim.’) are implicitly limited by the security claim to  272 bits.

Name Algorithms Bit size of Rounds
key data (block) output (block) pa

k m t r a

A����-M�� A,V128,128,12,128 128 unlim. 256 128 128 12
A����-P�� G128,128,12,0 128 unlim. 256 unlim. 128 12
A����-P��S���� F128,⇤,12,⇤ 128  128 128  128 128 12

IVkKk0⇤

pa

Initialization

M1
256

pa

64

Ms�1
256

pa

64

Absorb Message

Ms
256

64

0⇤k1

pa

T1
r

pa

c

Td`/re�1
r

pa

c

Td`/re
r

Figure 1: Pseudorandom Function Gk,r,a,t with output length ` (`  t or t = 0).

2.4.1 Initialization

The 320-bit initial state of A���� is formed by the secret key K of k bits and an
IV specifying the algorithm. The 64-bit IV of A����-P�� specifies the algorithm
parameters in a similar format as for A����, including k and the rate r each written
as an 8-bit integer and round number a encoded as an 8-bit integer as 27 + a = � a,
followed by the maximum output length of t bits as a 32-bit integer, or t = 0 for
arbitrarily long output:

IVk,r,a,t k k r k(1k07)� a k 08 k t

S IVk,r,a,t kK k 0256�k

In the initialization, the a-round permutation pa is applied to the initial state:

S pa(S)

2.4.2 Absorb Message

The PRF processes the padded message M, in blocks of 256 bits. The padding
process appends a single 1 and the smallest number of 0s to M such that the length
of the padded message is a multiple of 256 bits. The resulting padded message is
split into s blocks of 256 bits, M1 k . . . kMs:

M1, . . . , Ms 256-bit blocks of M k 1 k 0255�(|M|mod 256)

4

Algorithm 2: Authentication and verification procedures

Authentication
Ak,r,a,t(K, M)

Input: key K 2 {0, 1}k, k  128,
message M 2 {0, 1}⇤

Output: tag T 2 {0, 1}t

T Gk,r,a,t(K, M, t)
return T

Verification
Vk,r,a,t(K, M, T)

Input: key K 2 {0, 1}k, k  128,
message M 2 {0, 1}⇤,
tag T 2 {0, 1}t

Output: pass or fail

T⇤ Gk,r,a,t(K, M, t)
if T = T⇤ return pass
else return fail

2.6 Short-Input Pseudorandom Functions

Themode of operation ofA����-P��S���� is essentially the initialization ofA����-128
with a di�erent initial value, and the nonce replaced by a single message block M
of length m  128 bits. The resulting PRF A����-P��S���� is illustrated in Figure 2
and specified in Algorithm 3.

IVkKkMk0⇤

pa

K

T

128

Figure 2: PRF Fk,m,a,t for short inputs

Algorithm 3: Short-input PRF. In an implementation, m and t can be inputs (instead
of parameters).

PRF Fk,m,a,t(K, M) = T

Input: key K 2 {0, 1}k, k  128,
input M 2 {0, 1}m, m  128

Output: output T 2 {0, 1}t

S pa(IVk,m,a,t kK kM k 0256�k�m)

T dSet � dKet
return T

As shown in Algorithm 3, the 320-bit input to pa is formed by an IV specifying the
algorithm, the secret key K of k bits, and the message M of m bits. The 64-bit IV of
Fk,m,a,t includes the key length k, the size of the input block m, and the size of the
output block t, each written as an 8-bit integer, and the round number a encoded as

6

Dobraunig et al., 2021

Maria Eichlseder, 2023

Variants

Finalist # Variants
Key size

(bits)
Nonce size

(bits)
Tag size

(bits)
Digest

size (bits)

Ascon
2 AEAD
2 hash

128
--

128
--

128
--

--
256

Elephant 3 AEAD 128 96 64-128 --

GIFT-COFB 1 AEAD 128 128 128 --

Grain-128aead 1 AEAD 128 96 64 --

ISAP 4 AEAD 128 128 128 --

PHOTON-Beetle
2 AEAD
1 hash

128
--

128
--

128
--

--
256

Romulus
3 AEAD
1 hash

128
--

128
--

128
--

--
256

Sparkle
4 AEAD
2 hash

128-256
--

128-256
--

128-256
--

--
256-384

TinyJambu 3 AEAD 128-256 96 64

Xoodyak
1 AEAD
1 hash

128
--

128
--

128
--

--
256

Meltem Turan, 2023

The Selection Process

• Fair evaluation of finalists is challenging.
• Assigning weights for different evaluation criteria (security, performance in software and

hardware, design maturity, amount of third-party analysis, IP issues, etc.)
• Different security claims, different functionality, attacks with different complexities etc.
• Limited resources (not all algorithms got the same attention from the crypto community)

• Decision relied on publicly available analysis and benchmarking results.
• In February 2023, NIST announced the Ascon family as the winner.

• Large amount of third-party analysis
• AEAD variants were listed part of the CAESAR portfolio for ‘lightweight applications’.
• No tweak
• Performance advantage over NIST standards in software and hardware

Meltem Turan, 2023

mind.�Hence,�it�allows�for�masking�with�a�very�low�overhead�[5,�8]�and�even�leveled�
implementations�[3].�Moreover,�even�if�an�attacker�somehow�manages�to�recover�an�
internal�state�during�data�processing�(e.g.,�due�to�side-channel�attacks),�this�does�
not�directly�lead�to�the�recovery�of�the�secret�key�or�to�constructing�trivial�forgeries.�
These�properties�of�the�mode�set�Ascon apart�from�many�other�lightweight�designs.�

Taking� all� into� account,� Ascon is� not� only� highly� suited� for� scenarios� where�
lightweight�devices�communicate�with�lightweight�devices,�but�also�for�scenarios�
where�many�lightweight�devices�communicate�with�high-end�devices�(e.g.,�a�back-end�
server),�a�typical�use�case�in�many�applications�including�the�Internet�of�Things�(IoT).�
This�is�especially�true�in�scenarios�where�protection�against�side-channel�attacks�is�
needed.�

4 Planned tweak proposals

We�do�not�plan�any�tweaks�for�Ascon.�

Acknowledgments. The�authors�would�like�to�thank�all�researchers�contributing�
to�the�design,�analysis�and�implementation�of�Ascon.�In�particular,�we�want�to�thank�
Hannes�Gross�and�Robert�Primas�for�all�their�support�and�various�implementations�
of�Ascon.�

Part�of�this�work�has�been�supported�by�the�Austrian�Science�Fund�(FWF):�P26494-
N15�and�J�4277-N38.�

References

[1]� A.�Adomnicai,�J.�J.�Fournier,�and�L.�Masson.�“Masking�the�Lightweight�Authen-
ticated�Ciphers�ACORN�and�Ascon�in�Software”.�Cryptology�ePrint�Archive,�
Report�2018/708.�https://eprint.iacr.org/2018/708.�2018.�

[2]� D.�Bellizia,�F.�Berti,�O.�Bronchain,�G.�Cassiers,�S.�Duval,�C.�Guo,�G.�Lean-
der,�G.�Leurent,�I.�Levi,�C.�Momin,�O.�Pereira,�T.�Peters,�F.-X.�Standaert,�
B.�Udvarhelyi,�and�F.�Wiemer.�“Spook:�Sponge-Based�Leakage-Resistant�Au-
thenticated�Encryption�with�a�Masked�Tweakable�Block�Cipher”.�In:�IACR�
Transactions�on�Symmetric�Cryptology�2020.S1�(June�2020),�pp.�295–349.�url:�
https://tosc.iacr.org/index.php/ToSC/article/view/8623.�

[3]� D.�Bellizia,�O.�Bronchain,�G.�Cassiers,�V.�Grosso,�C.�Guo,�C.�Momin,�O.�Pereira,�
T.�Peters,�and�F.-X.�Standaert.�“Mode-Level�vs.�Implementation-Level�Physical�
Security�in�Symmetric�Cryptography�–�A�Practical�Guide�Through�the�Leakage-
Resistance�Jungle”.�In:�Advances�in�Cryptology�–�CRYPTO�2020.�Vol.�12170.�
LNCS.�Springer,�2020,�pp.�369–400.�url:�https://doi.org/10.1007/978-3-
030-56784-2_13.�

4�

Dobraunig et al., 2020

Changelog – A���� ��.�

Updates on 31 May 2021

asconv12.pdf:�

• Fix�typo�in�Section�2.5.1:�Remove�excessive�and�incorrect�zeros�in�64-bit�IV�of

A����-H��� and�A����-H����.�

Updates on 17 May 2021 (NIST LWC Final Round)

Algorithms:�

• The�specifications�and�test�vectors�of�A����-128,�A����-128a,�A����-80pq,

A����-X��,�and�A����-H��� remain�unchanged.�

• Added�a�new�hash�function�A����-H���� and�extendable�output�function�
A����-X��� to�the�Ascon�familiy.�

Compared�to�A����-H��� and�A����-X��,�A����-H���� and�A����-X���
use�8�rounds�during�absorbing�and�most�of�the�squeezing�instead�of�12,�while

the�transition�between�absorbing�and�squeezing�still�uses�12�rounds.�We�have

reduced�the�number�of�rounds�where�the�current�analysis�shows�a�very�large

security�margin�in�order�to�get�a�less�conservative�and�faster�variant�that�

pairs�nicely�with�A����-128a.�Moreover,�we�hope�that�these�less�conserva-

tive�variants�A����-H���� and�A����-X��� encourage�more�cryptanalysis

of�the�hash�function�in�the�last�round�of�the�standardization�process.�

asconv12.pdf:�

• Updated�Chapter�1�to�introduce�also�the�new�variants�A����-H���� and�
A����-X���

• Replaced�the�algorithm�Xh,r,a with�Xh,r,a,b in�order�to�define�new�variants�

A����-H���� and�A����-X��� in�Chapter�2.�Xh,r,a,b is�identical�to�Xh,r,a if�

a = b and�so�Xh,r,a,a = Xh,r,a.�

• Added�A����-H���� to�the�recommended�parameter�sets�at�second�place�for

hash�function�in�Section�2.2.�

• Added�A����-128a�and�A����-H���� as�recommended�pairing�for�authen-

ticated�encryption�and�hashing�in�Section�2.2.�
Dobraunig et al., 2021

The recommendation for NIST includes Ascon-Hash
combined with Ascon-128 or Ascon-128a.

— Ascon-Hash AND (Ascon-128 OR Ascon-128a)
— Ascon-Hash AND (Ascon-128 XOR Ascon-128a)
— (Ascon-Hash AND Ascon-128) OR Ascon-128a
— (Ascon-Hash AND Ascon-128) XOR Ascon-128a

Next Steps

Sixth Lightweight Cryptography Workshop in June 21-22 2023 (virtual)

Submission deadline: May 1, 2023

Aim: to explain the selection process, and to discuss various aspects of lightweight

cryptography standardization, such as

• Which ASCON variants to standardize? All of subset ? XOF instead of hash?

• Additionally functionality, e.g. dedicated MAC?

• Support for additional parameter sizes? e.g., larger nonce, shorter tags

Publication of the third–round status update

Publication of draft standard (in 2023)

Meltem Turan, 2023

Competition CAESAR NIST LWC

Algorithm v1
15-03-2014

v1.1
29-08-2015

v1.2
15-09-2016

v1.2
29-03-2019

v1.2
27-09-2019

v1.2
17-05-2021

Ascon-128 800c0600
00000000

80400c06
00000000

80400c06
00000000

80400c06
00000000

80400c06
00000000

80400c06
00000000

Ascon-128a ⸺ 80800c08
00000000

80800c08
00000000

80800c08
00000000

80800c08
00000000

80800c08
00000000

Ascon-96 600c0800
00000000 ⸺ ⸺ ⸺ ⸺ ⸺

Ascon-80pq ⸺ ⸺ ⸺ a0400c06
xxxxxxxx

a0400c06
xxxxxxxx

a0400c06
xxxxxxxx

Ascon-Hash ⸺ ⸺ ⸺ 00400c00
00000100

00400c00
00000100

00400c00
00000100

Ascon-Hasha ⸺ ⸺ ⸺ ⸺ ⸺ 00400c04
00000100

Ascon-XOF ⸺ ⸺ ⸺ 00400c00
00000000

00400c00
00000000

00400c00
00000000

Ascon-XOFa ⸺ ⸺ ⸺ ⸺ ⸺ 00400c04
00000000

Competition CAESAR NIST LWC

Algorithm v1 v1.1 v1.2 v1.2 v1.2 v1.2

Ascon-MAC ⸺ ⸺ ⸺ ⸺ ⸺ ⸺

Ascon-MACa ⸺ ⸺ ⸺ ⸺ ⸺ ⸺

Ascon-PRF ⸺ ⸺ ⸺ ⸺ ⸺ ⸺

Ascon-PRFa ⸺ ⸺ ⸺ ⸺ ⸺ ⸺

Ascon-PRFshort ⸺ ⸺ ⸺ ⸺ ⸺ ⸺

Algorithm IACR
03-12-2021

GitHub
21-09-2022

GitHub
24-03-2023

Ascon-MAC 80808c00
xxxxxxxx

80808c00
00000080

80808c00
00000080

Ascon-MACa ⸺ 80808c04
00000080

80808c04
00000080

Ascon-PRF 80808c00
xxxxxxxx

80808c00
00000000

80808c00
00000000

Ascon-PRFa ⸺ 80808c04
00000000

80808c04
00000000

Ascon-PRFshort 80xx4cxx
00000000

80xx4c80
00000000

80xx4cxx
00000000

Martin Schläffer, 2022

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

Why Cryptosystems Fail

Ross Anderson
University Computer Laboratory

Pembroke Street, Cambridge CB2 3QG
Email: rjal4©cl, cam. ac .uk

Abstract

Designers of cryptographic systems are at a disadvantage to
most other engineers, in that information on how their sys-
tems fail is hard to get: their major users have traditionally
been government agencies, which are very secretive about
their mistakes.

In this article, we present the results of a survey of the
failure modes of retail banking systems, which constitute
the next largest application of cryptology. It turns out that
the threat model commonly used by cryptosystem designers
was wrong: most frauds were not caused by cryptanalysis or
other technical attacks, but by implementation errors and
management failures. This suggests that a paradigm shift
is overdue in computer security; we look at some of the al-
ternatives, and see some signs that this shift may be getting
under way.

1 Introduction

Cryptology, the science of code and cipher systems, is used
by governments, banks and other organisations to keep in-
formation secure. It is a complex subject, and its national
security overtones may invest it with a certain amount of
glamour, but we should never forget that information secu-
rity is at heart an engineering problem. The hardware and
software products which axe designed to solve it should in
principle be judged in the same way as any other products:
by their cost and effectiveness.

However, the practice of cryptology differs from, say, that
of aeronautical engineering in a rather striking way: there is
almost no public feedback about how cryptographic systems
fail.

When an aircraft crashes, it is front page news. Teams
of investigators rush to the scene, and the subsequent en-

Permission to copy without fee all o¢ part of this material is
granted provided that the copies era not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, end notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires • fee
end/or specific permission.
Ist Conf.- Computer & Comm. Security '93-I 1/93 -VA,USA
© 1993 ACM 0-39791-629-8/93/0011...$1.50

215

quiries are conducted by experts from organisations with a
wide range of interests - the carrier, the insurer, the man-
ufacturer, the airline pilots' union, and the local aviation
authority. Their findings are examined by journalists and
politicians, discussed in pilots' messes, and passed on by
flying instructors.

In short, the flying community has a strong and insti-
tutionalised learning mechanism. This is perhaps the main
reason why, despite the inherent hazards of flying in laxge
aircraft, which are maintained and piloted by fallible hu-
man beings, at hundreds of miles an hour through congested
airspace, in bad weather and at night, the risk of being killed
on an air journey is only about one in a million.

In the crypto community, on the other hand, there is
no such learning mechanism. The history of the subject
([KI], [W1]) shows the same mistakes being made over and
over again; in particular, poor management of codebooks
and cipher machine procedures enabled many communica-
tion networks to be broken. Kahn relates, for example [K1,
p 484], that Norway's rapid fall in the second world war was
largely due to the fact that the British Royal Navy's codes
had been solved by the German Beobachtungsdienst - us-
ing exactly the same techniques that the Royal Navy's own
'Room 40' had used against Germany in the previous war.

Since world war two, a curtain of silence has descended
on government use of cryptography. This is not surpris-
ing, given not just the cold war, but also the reluctance of
bureaucrats (in whatever organisation) to admit their fail-
ures. But it does put the cryptosystem designer at a se-
vere disadvantage compared with engineers working in other
disciplines; the post-war years are precisely the period in
which modern cryptographic systems have been developed
and brought into use. It is as if accident reports were only
published for piston-engined aircraft, and the causes of all
jet aircraft crashes were kept a state secret.

2 Automatic Teller Machines

To discover out how modern cryptosystems are vulnerable
in practice, we have to study their use elsewhere. After
government, the next biggest application is in banking, and
evolved to protect automatic teller machines (ATMs) from
fraud.

SECRET

A HISTORY
OF

U.S. COMMUNICATIONS SECURITY (U)

THE DAVID G. BOAK LECTURES

VOLUME II

NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MARYLAND 20755

The information contained in this publication will not be disclosed to foreign nationals or their representatives
without express approval of the DIRECTOR, NATIONAL SECURITY AGENCY. Approval shall refer
specifically to this publication or to specific information contained herein.

JULY 1981

CLASSIFIED BY NSAICSSM 123-2
REVIEW ON I JULY 1001

DECLASSIFIED UNDER AUTHORITY OF THE
INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL,
E.O. 13526, SECTION 5.3(b)(3)

ISCAP APPEAL NO. 2009-049, document no. 2
DECLASSIFICATION DATE: October 14, 2015

NOT RELEASABLE TO FOREIGN NATIONALS

SECRET
HANDLE VIA COMINT CHANNELS ONLY

ORIGINAL
(lleverse Blank)

A BJSTOBY OF l1.S. COMMUNICATIONS SECURITY (U)
(The DaTid G. Boak Lectures)

HANDLING JNSTRUCl'IO.SS

1. This publication caaaiata of COWl!S and numbered pages 1 to 101 inclusive. Verify presence of each
page upon receipt.

2. Formal authorization for access ta SECRET material is required for personnel to have accesi;
to ibis publication.

3. This publication will not be released outside government channels without approval oC the Di·
n:ctor, National Security Apocy.

4. utra1.;-U from tlW publication may be made for classroom or individual instruction purpose&
only. Such utracta will be classified SEORST and accounted for locally until de-
stroyed.

5. This publication will not be carried in aircraft for use therein.

NATIONAL SECURITl' I.:\r'ORMATIO.S
Unauthnrized Disclnsore Subject to Criminal Sanctions

NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE. 20755

Revised July 1973

111J Dinaot, NSA. ptan11111C ID SSA. .Muul IZ3-Z.
lump(6-Ge-1 Dech-'Rn!Nll Sc&edllle

1165% EumptC&sep112.
J>-+"'lcet!r dale CllllllM be dfiefaiaed..

ORIGINAL }
Revene (Page 2) Blank

DECLASSIFIED UNDER AUTHORITY OF THE l
INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL,
E.0. 13526, SECTION 5.3(b)(3) _j
ISCAP APPEAL NO. 2009-049, document no. 1
DECLASSIFICATION DATE: October 14, 2015

Scott Bluerock, 2006

Outcome(X|ABCD) > Outcome(X̄|ABCD)

Security(X) > Security(X̄)

Cormac Herley, 2017

Adversary A

System
S

Environment E

Specification SP

Assumption EA

Requirement RQ

Fig. 1. A security rationale reduces (thick arrows) a security requirement to a specification and an
environmental assumption. The validity of the environmental assumption depends on the adver-
sary’s capabilities. The adversary interacts (thin arrows) with the system over the environment.

manner. The two other relations in (†) cannot however be readily formalized. In partic-
ular, the nebulous entities E and A often have no clear boundaries. This poses a major
challenge to formalizing the notion of a security rationale. For the rest of this paper,
we therefore treat the condition (†) as an informal guideline and as a way to classify
verification and refutation objectives.

Second, environmental assumptions and requirements have, in essence, the same
type. In particular, (†) would be trivially satisfied if EA were RQ . The resulting reduc-
tion would however clearly not help with the requirement’s analysis. Moreover, whether
a statement is seen as a requirement or an assumption depends on the task at hand. For
instance, in Example 3, the assumption that one cannot enter the lab through its window
constitutes a requirement if we are interested in constructing the lab building. To satisfy
this requirement we may, for example, install window bars; this would be preceded by
a specification that would fix the window bars’ construction in a way that is deemed
sufficient to resist a given adversary.

Third, in the security literature, the environment is sometimes conflated with the
adversary. To denote such an adversarial environment, let E⇤ = EkA. Then (†) boils
down to S |= SP ^ SkE⇤ |= EA ! SkE⇤ |= RQ .

Finally, note that any security rationale can account for only a small set of entities
and their interactions: we cannot reason about everything in the world. Therefore, any
rationale inevitably relies upon the assumption that the excluded entities and interac-
tions play no role in the requirement’s satisfaction. This assumption in effect excludes
certain adversarial actions. A prominent example is the assumption that the system
has no side channels for communicating with the adversary; otherwise, its protection
mechanisms can potentially be subverted. This further explains why we cannot dispense
with S in SkEkA |= EA above.

The following example illustrates the above notions.

Example 5. Consider the R&D laboratory of Example 1. The requirement RQ states
that only staff members may enter the lab. The lab has a door that is controlled by an

6

Dashti & Basin, 2016

KC Green, 2013

Tom Nardi, 2019

Ian Mackay, 2020

MHST Educators, 2019

rsif.royalsocietypublishing.org

Research
Cite this article: Thimbleby H, Oladimeji P,
Cairns P. 2015 Unreliable numbers:
error and harm induced by bad design can be
reduced by better design. J. R. Soc. Interface
12: 20150685.
http://dx.doi.org/10.1098/rsif.2015.0685

Received: 31 July 2015
Accepted: 17 August 2015

Subject Areas:
medical physics

Keywords:
number entry, human error, dependable
systems, evaluating user interfaces

Author for correspondence:
Harold Thimbleby
e-mail: harold@thimbleby.net

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rsif.2015.0685 or
via http://rsif.royalsocietypublishing.org.

Unreliable numbers:
error and harm induced by bad design
can be reduced by better design
Harold Thimbleby1, Patrick Oladimeji1 and Paul Cairns2

1College of Science, Swansea University, Swansea SA2 8PP, UK
2Department of Computer Science, University of York, York YO10 5DD, UK

Number entry is a ubiquitous activity and is often performed in safety- and
mission-critical procedures, such as healthcare, science, finance, aviation
and in many other areas. We show that Monte Carlo methods can quickly
and easily compare the reliability of different number entry systems. A sur-
prising finding is that many common, widely used systems are defective,
and induce unnecessary human error. We show that Monte Carlo methods
enable designers to explore the implications of normal and unexpected oper-
ator behaviour, and to design systems to be more resilient to use error. We
demonstrate novel designs with improved resilience, implying that the
common problems identified and the errors they induce are avoidable.

Science is a way of trying not to fool yourself. The first principle is that you must not
fool yourself, and you are the easiest person to fool.

—Richard P. Feynman [1, ch. 4]

1. Introduction
Number entry is often performed as a ‘simple’ subtask within a bigger task. For
instance, using a calculator typically requires entering a series of numbers and
operators. Unnoticed errors while entering the numbers would result in an
error in the calculation. To the user who needs to use a calculator and therefore
has no precise expectation of the result, this error is likely to go undetected and
escalate higher up into the user’s workflow or subsequent tasks.

As users of interactive systems, we have little idea how much our unnoticed
errors introduce inaccuracy or other problems. Our laboratory work [2]
suggests about 3.5% of numbers we enter (on conventional numeric keyboards)
are wrong and we do not notice that they are wrong. Consequently, designing
interactive systems to reduce the rate of unnoticed use errors is a worthwhile
goal. Unfortunately, the same human error problems—errors happen and
remain uncorrected because we are largely unaware of them—beset designers
and manufacturers too: they do not know some designs are defective and
cause problems for users. Finally, purchasers are unable to compare and
choose more dependable or safer equipment when it is available.

When we enter numbers into a system or piece of equipment, some num-
bers will be wrong because we make typing slips or other errors. Numbers
will remain wrong if we do not notice they were wrong. We may use various
techniques, such as entering lists of numbers twice (e.g. checking totals are
the same) or entering checksums to help detect possible errors.

If we notice errors as we type in numbers, we typically use strategies like
pressing or keys to help to correct the errors.

Unfortunately, as this paper shows, common defects in system design can
leave corrected numbers still wrong. Additional unnoticed errors can occur
during the error correction process. If we do not notice the ‘corrected’ numbers

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.

 D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n

22
 Ja

nu
ar

y
20

23

Don Norman, 1986

Nancy Leveson, 2012

82 Chapter 4

Problem Reports

Operating Procedures

Revised
operating procedures

Whistleblowers
Change reports
Certification Info.

Manufacturing
Management

Safety
Reports

Policy, stds.

Work
Procedures

safety reports
audits
work logs

Manufacturing
inspections

Hazard Analyses

Documentation

Design Rationale

Company

Resources
Standards

Safety Policy Operations Reports

Management
Operations

Resources
Standards

Safety Policy

Incident Reports
Risk Assessments
Status Reports

Safety-Related Changes

Test reports

Test Requirements
Standards

Review Results

Safety Constraints

Implementation

Hazard Analyses

Progress Reports

Safety Standards Hazard Analyses
Progress Reports

Design,
Work Instructions Change requests

Audit reports

Problem reports

Maintenance

Congress and Legislatures

Legislation

Company

Congress and Legislatures

Legislation

Legal penalties
Certification
Standards
Regulations

Government Reports
Lobbying
Hearings and open meetings
Accidents

Case Law
Legal penalties
Certification
Standards
Regulations

Accidents and incidents

Government Reports
Lobbying
Hearings and open
meetings
Accidents

Whistleblowers
Change reports
Maintenance Reports
Operations reports

Accident and incident
reports

Change Requests
Performance Audits

Hardware replacements
Software revisions

Hazard Analyses
Operating Process

Case Law

SYSTEM DEVELOPMENT

Insurance Companies, Courts
User Associations, Unions,

Industry Associations,
Government Regulatory Agencies

Management

Management

Management
Project

Government Regulatory Agencies
Industry Associations,

User Associations, Unions,

Documentation

and assurance

and Evolution

SYSTEM OPERATIONS

Insurance Companies, Courts

Physical

Actuator(s)

Incidents

Operating Assumptions

Process

Controller
Automated

Human Controller(s)

Sensor(s)

 Figure 4.4
 General form of a model of sociotechnical control.

Downloaded from http://direct.mit.edu/books/book/chapter-pdf/268344/9780262298247_cah.pdf by guest on 23 January 2023

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

Contents

Executive summary 1
Audience . 1
Framework and history . 2

0 A brief introduction to authenticated encryption 3
0.1 Confidentiality . 3
0.2 Integrity . 4
0.3 Performance . 5

1 The security target is wrong 7
1.1 Side-channel attacks—the security target is too low 7
1.2 Birthday attacks—the security target is too low 8
1.3 Data limits—the security target is too high 8
1.4 Attack economics—the security target is too high 9
1.5 Quantum computers—the security target is too low 9

2 The interface is wrong 11
2.1 Streams . 11
2.2 Files . 12
2.3 Noisy channels . 13
2.4 Software engineering and hardware engineering 13

3 The performance target is wrong 15
3.1 Denial-of-service attacks . 15
3.2 Very short inputs . 15
3.3 Higher-level protocols . 15
3.4 Flexibility . 16
3.5 CPU evolution . 16

4 Mistakes and malice 17
4.1 Error-prone designs . 17
4.2 Unverifiability . 17
4.3 Miscommunication of security prerequisites 18
4.4 Incorrect proofs . 19
4.5 Malicious cryptographic software and hardware 19

i

Challenges in Authenticated Encryption

Editor

Daniel J. Bernstein

Contributors (alphabetical order; a�liations included for identification only)

Jean-Philippe Aumasson (Kudelski Security, Switzerland)
Steve Babbage (Vodafone, UK)

Daniel J. Bernstein (University of Illinois at Chicago, USA;
Technische Universiteit Eindhoven, Netherlands)

Carlos Cid (Royal Holloway, University of London, UK)
Joan Daemen (STMicroelectronics, Belgium;

Radboud Universiteit, Netherlands)
Orr Dunkelman (University of Haifa, Israel)
Kris Gaj (George Mason University, USA)

Shay Gueron (University of Haifa, Israel; Intel, Israel)
Pascal Junod (HEIG-VD, Switzerland)

Adam Langley (Google, USA)
David McGrew (Cisco, USA)

Kenny Paterson (Royal Holloway, University of London, UK)
Bart Preneel (KU Leuven, Belgium)

Christian Rechberger (Danmarks Tekniske Universitet, Denmark)
Vincent Rijmen (KU Leuven, Belgium)

Matt Robshaw (Impinj, USA)
Palash Sarkar (Indian Statistical Institute, Kolkata, India)

Patrick Schaumont (Virginia Tech, USA)
Adi Shamir (Weizmann Institute, Israel)

Ingrid Verbauwhede (KU Leuven, Belgium)

17. July 2015 (workshop) + 1. March 2017 (white paper)

Revision 1.05

The work described in this report has in part been supported by the Commission of the European Commu-

nities through the H2020-ICT program under contract H2020-ICT-2014 no. 645421. The information in this

document is provided as is, and no warranty is given or implied that the information is fit for any particular

purpose. The user thereof uses the information at its sole risk and liability.

Safford & Seiler, 1944

NISTIR 7977 NIST CRYPTOGRAPHIC STANDARDS AND
 GUIDELINES DEVELOPMENT PROCESS

3

proofs. In solicitations for proposed algorithms, NIST will ask for these proofs and, when
available, include them in the public record when standards and guidelines are developed.

Global Acceptability: While the statutory basis for NIST’s work in cryptography is the need for
protection of non-national security federal information systems, NIST standards are the
foundation of many information technology products and services that are developed by U.S.
suppliers and sold globally. NIST recognizes the role of its cryptographic standards in assuring
the competitiveness of U.S. industry in delivering these products and services, and is committed
to ensuring that its standards and guidelines are accepted internationally.

Usability: NIST aims to develop cryptographic standards and guidelines that help implementers
create secure and usable systems for their customers that support business needs and workflows,
and can be readily integrated with existing and future schemes and systems. Cryptographic
standards and guidelines should be chosen to minimize the demands on users and implementers
as well as the adverse consequences of human mistakes and equipment failures.

Continuous Improvement: As cryptographic algorithms are developed, and for the duration of
their use, the cryptographic community is encouraged to identify weaknesses, vulnerabilities, or
other deficiencies in the algorithms specified in NIST publications. When serious problems are
identified, NIST engages with the broader cryptographic community to address them. NIST
conducts research in order to stay current, to enable new cryptographic advances that may affect
the suitability of standards and guidelines, and so that NIST and others can take advantage of
those advances to strengthen standards and guidelines.

Innovation and Intellectual Property (IP): While developing its cryptographic standards and
guidelines for non-national security systems, NIST has noted a strong preference among its users
for solutions that are unencumbered by royalty-bearing patented technologies. NIST has
observed that widespread adoption of cryptographic solutions that it has developed has been
facilitated by royalty-free licensing terms. While NIST prefers to select algorithms that are
unencumbered by intellectual property claims, it may select algorithms with associated patents if
the technical benefits outweigh the potential costs that would be incurred in implementing the
patented technologies. NIST will explicitly recognize and respect the value of IP and the need to
protect IP if it is incorporated into standards or guidelines. Furthermore, NIST believes it is
important to balance the rights of IP holders and of those seeking to utilize technologies
involving intellectual property rights.

Overarching Considerations

Following formal processes as described in this document is necessary but insufficient in
developing robust, trustworthy, and effective cryptographic standards and guidelines. Ultimately,
the final decision about what to include in a cryptographic standard or guideline rests with NIST.

NIST, 2016

Whitten & Tygar, 1999

xkcd, 2015

Renaud et al, 2014
Renaud et al., 2014

Bill Verplank, 2000

Attack paths
prioritised scenarios

Threat events
hypothesised exploits

Entry points
external interfaces

Mitigations
likelihood & impact

Key assets
targeted elements

Architecture
data flow & trust zones

NCSC, 2021

Processes
Where data will
change from one
form to another.

Data flows
Represents data
moving from one
part of the system
to elsewhere.

Data stores
Indicates data at
rest, i.e. a place
for longer storage.

Terminators
Also called actors
or external entities.
These are the
limits of analysis.

Trust zones
Can be drawn as
trust boundaries,
i.e. dotted lines
between elements.

Architectural diagrams
with security sauce Confidentiality

Integrity

Availability

Authentication

Authorisation

Accountability

Information disclosure

Tampering

Denial of service

Spoofing

Elevation of privilege

Repudiation

IEC 62443-4-1:2018

Medtronic, 2006

Components

Data flows

Crown jewels

Trust zones

Assumptions

Threats (STRIDE)

Prioritisation

Countermeasures

Security testing

Follow-up

Silent ‘pair programming’

— Don’t want to break the flow
— Switch every five minutes
— Apply the refinement approach

10 min. Outline the program’s structure as comments
 What message(s) will you be sending/receiving?

 Which algorithm(s) will you be using for this?

10 min. Write pseudocode to make your ideas tangible
20 min. Translate your pseudocode into Python code

https://pypi.org/p/ascon

$ pip install ascon

>>> import ascon
>>> ascon.[tab][tab]
>>> data = b"..."
>>> print(data.hex())

Mail your commented code to
ascon@arnepadmos.com

Phase 1 – Comments
Alignment of flows
and our threat model

Phase 2 – Pseudocode
Match of structure to
messages and threats

Phase 3 – Source code
Compare comments
to the functions used

Exploratory initial qualitative observations:

— Zero, one, or just a couple of parameters passed

— Wrapper unctions taking a message as input

— Hardcoded or empty nonce/key, e.g. in wrapper

— Parameters to library appearing out of thin air

— No key diversification, error handling, etc.

Random ideas for uture work:

— Use of ‘AEAD’ and ‘XOF’, not ‘MAC’ or ‘hash’

— Define standard serialisation, e.g. AD | n | C | t

— Appropriate parameter ordering for unctions

— Creation of a compatible user-riendly wrapper

— Impact of programming paradigm on output

2828

N

74

1
2 3

4 5

132

1

2

3

4

5

IDEO.org, 2015

SCA Evaluation & Benchmarking of
Finalists in the NIST Lightweight

Cryptography Standardization Process

Jens-Peter Kaps
& Kris Gaj

How might we
integrate usability
into our process?

How would you
like your designs
to be evaluated?

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

Next Steps

Sixth Lightweight Cryptography Workshop in June 21-22 2023 (virtual)

Submission deadline: May 1, 2023

Aim: to explain the selection process, and to discuss various aspects of lightweight

cryptography standardization, such as

• Which ASCON variants to standardize? All of subset ? XOF instead of hash?

• Additionally functionality, e.g. dedicated MAC?

• Support for additional parameter sizes? e.g., larger nonce, shorter tags

Publication of the third–round status update

Publication of draft standard (in 2023)

Meltem Turan, 2023

Christoph Dobraunig, 2018

From: hi@arnepadmos.com
Sent: Sunday, October 9, 2022 5:13 PM
To: lightweight-crypto
Cc: lwc-forum@list.nist.gov
Subject: FINALIST OFFICIAL COMMENT: ASCON

Dear NIST,

Let me start by saying that I think Ascon would make a great selection for the NIST LWC standard. I do have several
comments:

Ascon parameters -- While the 30 September 2022 status update about Ascon states that the authors 'consider
both Ascon-128 and Ascon-128a to be equally well-suited and secure choices', during both the CAESAR and LWC
competition, Ascon-128 has always been the primary recommendation in every version of the submitted specifications. I
believe that Ascon-128 should remain the primary recommendation, as I think that 'late' changes of key decisions -- such
as those made to Romulus -- are undesirable.

Sessions and ratcheting -- In the latest Xoodyak update, the authors emphasise 'that API flexibility is an important
asset for a lightweight cryptographic primitive'. Specifically, they note the utility of support for sessions and rolling
subkeys. In personal communication, the Ascon team has shared that intermediate tags and ratcheting can be
implemented by reusing the MAC as the nonce and by using the non-masked half of the state as the new key. If Ascon is
selected, I believe it would be useful to standardise such features in an additional publication (see below).

Feature parity with SHAKE -- One year after SHA-3 was standardised as FIPS 202, an extension defining modes of
operation constructed around SHAKE was published as NIST SP 800-185. Key features of these modes are the support for
tuples and customisation strings. In addition to support for sessions and ratcheting, Ascon can also benefit from such
features.
As illustrated by BLINKER, Strobe, SHOE, and Cyclist, sponges can be the basis for simple, lightweight two-party half-
duplex record protocols.
Support for tuples and customisation strings -- e.g. through additional domain separation constants and/or padding
rules -- can disambiguate directionality, metadata, headers, and protocol types. Note that Ascon's mode, including these
extensions, may also be useful for SHAKE.

Regards,
Arne

1

Adam Cohn, 2006

length associated data, a fixed-length nonce, and a fixed-length key. The output is a variable-
length ciphertext. Authenticated decryption, also known as decryption-verification, shall be
supported: it shall be possible to recover the plaintext from a valid ciphertext (i.e., a ciphertext
that corresponds to the plaintext for a given associated data, nonce, and key), given associated
data, nonce and key. Plaintext shall not be returned by the decryption-verification process if the
ciphertext is invalid.

From a security point of view, an AEAD algorithm should ensure both the confidentiality of the
plaintexts (under adaptive chosen-plaintext attacks) and the integrity of the ciphertexts (under
adaptive forgery attempts). AEAD algorithms are expected to maintain security as long as the
nonce is unique (not repeated under the same key). Any security loss when the nonce is not unique
shall be documented, and algorithms that do not lose all security with repeated nonces may
advertise this as a feature.

The submitters are allowed to submit a family of AEAD algorithms, where members of the family
may vary in external parameters (e.g., key length, nonce length), or in internal parameters (e.g.,
number of rounds, or state size). The family shall include at most 10 members. The following
requirements apply to all members of the family.

An AEAD algorithm shall not specify key lengths that are smaller than 128 bits. Cryptanalytic
attacks on the AEAD algorithm shall require at least 2112 computations on a classical computer in
a single-key setting. If a key size larger than 128 bits is supported, it is recommended that at least
one recommended parameter set has a key size of 256 bits, and that its resistance against
cryptanalytical attacks is at least 2224 computations on a classical computer in a single-key setting.

AEAD algorithms shall accept all byte-string inputs that satisfy the input length requirements.
Submissions shall include justification for any length limits.

The family shall include one primary member that has a key length of at least 128 bits, a nonce
length of at least 96 bits, and a tag length of at least 64 bits. The limits on the input sizes (plaintext,
associated data, and the amount of data that can be processed under one key) for this member shall
not be smaller than 250-1 bytes.

3.2 Hash Function Requirements

A hash function is a function with one byte-string input and one byte-string output. The input is a
variable-length message. The output is a fixed-length hash value.

It should be computationally infeasible to find a collision or a (second) preimage for this hash
function. The hash function should also be resistant against length extension attacks. For example,
if part of the message is a secret key that is unknown to the attacker, it should be infeasible for this
attacker to construct a hash value corresponding to a different message that contains the same
secret key. In several practical applications, hash functions may need to satisfy other security
properties as well, such as retaining some level of security when the output is truncated. Hash
function submissions should describe any additional security properties that are provided.

8

NIST, 2018

ci : the ith ciphertext bit.
cai : a control bit at the ith step. It is used to separate the processing

of associated data, the processing of plaintext, and the generation
of authentication tag.

cbi : another control bit at the ith step. It is used to allow a keystream
bit to a↵ect a feedback bit during initialization, processing of as-
sociated data, and the tag generation.

IV 128 : 128-bit initialization vector of ACORN-128.
IV 128,i : the ith bit of IV 128.
K128 : 128-bit key of ACORN-128.
K128,i : the ith bit of K128.
ksi : The keystream bit generated at the ith step.
pclen : bit length of the plaintext/ciphertext with 0  pclen < 264 .
mi : one data bit.
P : plaintext.
pi : the ith plaintext bit.
Si : state at the beginning of the ith step.
Si,j : jth bit of state Si . For ACORN-128, 0  j  292.
T : authentication tag.
t : bit length of the authentication tag with 64  t  128.

1.2.3 Functions

Two Boolean functions are used in ACORN: maj and ch.

maj(x, y, z) = (x&y)� (x&z)� (y&z) ;
ch(x, y, z) = (x&y)� ((⇠x)&z) ;

1.3 ACORN-128

ACORN-128 uses a 128-bit key and a 128-bit initialization vector. The associ-
ated data length and the plaintext length are less than 264 bits. The authenti-
cation tag length is less than or equal to 128 bits. We recommend the use of a
128-bit tag.

1.3.1 The state of ACORN-128

The state size of ACORN-128 is 293 bits. There are six LFSRs being concate-
nated in ACORN-128. The state is shown in Fig.1.1.

1.3.2 The functions of ACORN-128

There are three functions in ACORN-128: the function to generate keystream
bit from the state, the function to compute the overall feedback bit, and the

4

Hongjun Wu, 2016

I’d rather not add a new, dedicated MAC
mode of operation unless it provides an
advantage that Ascon-AEAD can not. That
advantage should then be clearly stated.

Simon Hoerder, 2023

Rhys Weatherley, 2023

A given instance, denoted TurboSHAKE[c], takes as input:

• a message M , a byte string of variable length, and

• a domain separation parameter D, a byte with a value in the range [0x01, . . . , 0x7F]
in hexadecimal.

As a XOF, the output of TurboSHAKE[c] is unlimited, and the user can request as
many output bits as desired. It can be used for traditional hashing simply by generating
outputs of the desired digest size.

TurboSHAKE produces unrelated outputs on different tuples (c, M, D). For a given
capacity, the value D is meant to provide domain separation, that is, for two different val-
ues D1 != D2, TurboSHAKE[c](·, D1) and TurboSHAKE[c](·, D2) act as two independent
functions of M . We believe the range of D to be sufficient to cover all use cases.

Users that do not require multiple instances can take as default D = 0x1F.

Named instances In addition, we define:

• TurboSHAKE128 as TurboSHAKE[c = 256], and

• TurboSHAKE256 as TurboSHAKE[c = 512].

Procedure To compute TurboSHAKE[c](M, D), proceed as follows. Let R = 200− c/8
be the rate in bytes and f the Keccak-p[1600, nr = 12] permutation [60].

1. Input preparation

(a) Append to M the byte D, followed by the minimum number of bytes 0x00
(possibly none) until M ′ = M ||D||0x00∗ has a length that is multiple of R
bytes.

(b) Bitwise add (XOR) the byte 0x80 into the last byte of M ′.
(c) Cut M ′ into m blocks of R bytes each, i.e., M ′ = M1|| . . . ||Mm.

2. Absorbing phase

(a) Let S = 0x00200.
(b) For each block Mi for i = 1 to m:

i. Let S ← f(S ⊕ (Mi||0x00200−R)).

3. Squeezing phase

(a) Repeat as long as necessary:
i. Output the first R bytes of S.
ii. Let S ← f(S).

(b) Truncate the output if longer than needed.

2 Security claim
We make a flat sponge claim [6] with c bits of claimed capacity in Claim 1. Informally,
it means that TurboSHAKE shall offer the same security strength as a random oracle
whenever that offers a strength below c/2 bits and a strength of c/2 bits in all other cases.

2

Bertoni et al., 2023

Table 2.3.: Initial values for I��� instances in hex notation.

I���-P-r�,r�
s�,s�,s�,s� -k

IV� 1 k k k r�kr� k s�ks�ks�ks� k 0⇤
IV�� 2 k k k r�kr� k s�ks�ks�ks� k 0⇤
IV�� 3 k k k r�kr� k s�ks�ks�ks� k 0⇤

I���-A-����
IV� 01 80 4001 0C01060C 00*
IV�� 02 80 4001 0C01060C 00*
IV�� 03 80 4001 0C01060C 00*

I���-K-����
IV� 01 80 9001 10010808 00*
IV�� 02 80 9001 10010808 00*
IV�� 03 80 9001 10010808 00*

I���-A-���
IV� 01 80 4001 0C0C0C0C 00*
IV�� 02 80 4001 0C0C0C0C 00*
IV�� 03 80 4001 0C0C0C0C 00*

I���-K-���
IV� 01 80 9001 140C0C0C 00*
IV�� 02 80 9001 140C0C0C 00*
IV�� 03 80 9001 140C0C0C 00*

2.6. On Hash Functions using A����-p or K�����-p[400]

Since I��� is based on either A����-p or K�����-p[400], it lends itself to pairing with
already specified hash functions using the same permutations. In the case of I���-A-����
and I���-A-���, we suggest a pairing with the hash function A����H��� specified in the
A���� v1.2 design document [DEMS21]. Implementations of A����H��� can be found
at https://github.com/ascon/ascon-c. In the case of I���-K-����, we suggest a pairing
with ������[K�����-p[400, 16], pad10*1, 144](Mk01, 256), and for I���-K-��� a pairing
with ������[K�����-p[400, 20], pad10*1, 144](Mk01, 256), following the specifications in
NIST FIPS PUB 202 [Nat15]. Implementations of K�����-based hash functions can be
found at https://github.com/XKCP/XKCP.

9

Dobraunig et al., 2021

As illustrated by BLINKER, Strobe, SHOE, and Cyclist,
sponges can be the basis for simple, lightweight two
party half-duplex record protocols. Support for tuples
and customisation strings – e.g. through additional
domain separation constants and/or padding rules –
can disambiuate directionality, metadata, headers,
and protocol types.

From my comments to NIST

Parsing ambiguities in authentication and key
establishment protocols

Liqun Chen

Hewlett-Packard Laboratories

Filton Road

Stoke GiÆord

Bristol BS34 8QZ, UK

liqun.chen@hp.com

Chris J. Mitchell

Royal Holloway

University of London

Egham

Surrey TW20 0EX, UK

c.mitchell@rhul.ac.uk

30th September 2008

Abstract

A new class of attacks against authentication and authenticated key estab-
lishment protocols is described, which we call parsing ambiguity attacks. If
appropriate precautions are not deployed, these attacks apply to a very wide
range of such protocols, including those specified in a number of international
standards. Three example attacks are described in detail, and possible gen-
eralisations are also outlined. Finally, possible countermeasures are given,
as are recommendations for modifications to the relevant standards.

1 Introduction

Over the last four years a number of new attacks have been published on
long-established and apparently stable standardised authenticated key es-
tablishment protocols. The origin of these protocols can be traced back to
the seminal paper of Needham and Schroeder [24], and the protocols con-
cerned had been widely studied and were believed to be secure. Indeed, the
first edition of the international standard for key establishment mechanisms
using symmetric cryptography, ISO/IEC 11770-2, appeared in 1996 [8], and
no problems were identified until 2004.

However, things have changed in recent years, with the publication of a
number of attacks (including a range of ‘type attacks’) on two standardised
protocols. The attacked protocols (mechanisms 12 and 13 of ISO/IEC 11770-
2) both assume that the two parties who wish to establish a shared secret
key already share a secret key with a trusted third party (acting as a key
translation centre).

1

ALPACA: Application Layer Protocol Confusion -
Analyzing and Mitigating Cracks in TLS Authentication

Marcus Brinkmann1, Christian Dresen2, Robert Merget1, Damian Poddebniak2, Jens Müller1, Juraj
Somorovsky3, Jörg Schwenk1, and Sebastian Schinzel2

1Ruhr University Bochum
2Münster University of Applied Sciences

3Paderborn University

Abstract
TLS is widely used to add confidentiality, authenticity and
integrity to application layer protocols such as HTTP, SMTP,
IMAP, POP3, and FTP. However, TLS does not bind a TCP
connection to the intended application layer protocol. This
allows a man-in-the-middle attacker to redirect TLS traffic
to a different TLS service endpoint on another IP address
and/or port. For example, if subdomains share a wildcard
certificate, an attacker can redirect traffic from one subdomain
to another, resulting in a valid TLS session. This breaks
the authentication of TLS and cross-protocol attacks may be
possible where the behavior of one service may compromise
the security of the other at the application layer.

In this paper, we investigate cross-protocol attacks on TLS
in general and conduct a systematic case study on web servers,
redirecting HTTPS requests from a victim’s web browser to
SMTP, IMAP, POP3, and FTP servers. We show that in
realistic scenarios, the attacker can extract session cookies
and other private user data or execute arbitrary JavaScript in
the context of the vulnerable web server, therefore bypassing
TLS and web application security.

We evaluate the real-world attack surface of web browsers
and widely-deployed email and FTP servers in lab experi-
ments and with internet-wide scans. We find that 1.4M web
servers are generally vulnerable to cross-protocol attacks, i.e.,
TLS application data confusion is possible. Of these, 114k
web servers can be attacked using an exploitable application
server. Finally, we discuss the effectiveness of TLS exten-
sions such as Application Layer Protocol Negotiation (ALPN)
and Server Name Indiciation (SNI) in mitigating these and
other cross-protocol attacks.

1 Introduction

TLS. With Transport Layer Security (TLS) [56], confidential
and authenticated channels are established between two com-
munication endpoints. In typical end-user protocols, such as
HTTP, SMTP, or IMAP, the TLS server authenticates to the

Application ServicesVictim Browser MitM

Origin:
www.bank.com

www.bank.com:443

*.bank.com

ftp.bank.com:990

Cross-Protocol FTPS Response

Origin:
www.attacker.com

Cross-Origin HTTPS Request

POST /
Host: www.bank.com
Cookie: secret
HELP <script>reflect()</script>

Unknown command:
<script>reflect()</script>

*.bank.com

Option 3: Reflection Attack

HTTP/1.1 200 OK
<script>stored()</script>

Option 2: Download Attack

Cookie: secret

Option 1:

Upload Attack

Figure 1: Basic idea behind application layer cross-protocol
attacks on HTTPS. A MitM attacker leads the victim to an
attacker-controlled website that triggers a cross-origin HTTPS
request with a specially crafted FTP payload. The attacker
then redirects the request to an FTP server that has a certificate
compatible with the web server. The attack either (1) uploads
a secret cookie to FTP, or (2) downloads a stored malicious
JavaScript file from FTP, or (3) reflects malicious JavaScript
contained in the request. In case (2) and (3), the JavaScript
code is executed in the context of the targeted web service.

client by presenting an X.509 certificate. In this setting, the
server is identified by the Common Name (CN) field or the
Subject Alternate Name (SAN) extension in the certificate,
which contains one or more hostnames or wildcard patterns
(e.g., *.bank.com). As part of the certificate validation, the
client confirms that the destination of the request matches the
CN or SAN of the certificate.

Since TLS does not protect the integrity of the TCP con-
nection itself (i.e., source IP & port, destination IP & port), a
man-in-the-middle (MitM) attacker can redirect TLS traffic
for the intended TLS service endpoint and protocol to another,
substitute TLS service endpoint and protocol. If the client
considers the certificate of the substitute server to be valid
for the intended server, for example, if wildcard certificates

USENIX Association 30th USENIX Security Symposium 4293

Designing cryptographic algorithms

Reducing a too large security margin

Block ciphers: reducing number of rounds might be OK
Obvious option considered by cryptanalysts
Modifying other parameters: doubtful

Complex constructions with non ideal primitives

Lose the benefit of an eventual security proof
High risk of early broken versions (AEZ, Kravatte)

Require a large effort of cryptanalysis to obtain confidence

Cryptanalysis of NORX and Kravatte Thomas Fuhr (ANSSI, France) October 10, 2018 40 / 41 Thomas Fuhr, 2018

700,000 LOC

disco-c libdisco (go)

OpenSSL

4,000 LOC1,000 LOC

2,000 LOC

DiscoNet* (C#)

* implementation by Artyom Makarov

David Wong, 2018

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.

I Design with mathematical and legal provability in mind.
I Aim at simplicity and small footprint: use a single sponge permutation for key

derivation, confidentiality, integrity, etc. (Instead of distinct algorithms.)
I Use a single state variable in both directions, instead of 8+ cryptovariables.
I Ideally this protocol would be realizable with semi-autonomous integrated

hardware, without much CPU or MCU involvement.

3 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Saarinen & Aumasson, 2014

Nadim Kobeissi, 2019

A couple of suggestions:

— Simpliy the suite to one AEAD + one XOF

— Discourage shorter tags (forbid tags <64 bits?)

— Define 32-bit ‘tweak’ for key/nonce/XOF/…

— Ensure parameters afford extensibility (d, h|t)

— Let’s have a protocol effort (cf. AES modes?)

IEC, 2021

Linux Nordwalde, 2007

Cryptographic competitions

An illustrated history of Ascon

Real-world challenges

Lessons rom usable security

Back to the uture of PBC

hello@arnepadmos.com

