The past, present, and futures
of Ascon parameterisation

AAAAAAAAAA

ere ({] v O 0 # csrc.nist.gov 2 N h + ©

= An official website of the United States government Here's how you know v

NIST SearchCSRC Q= CSRCMENU

Information Technology Laboratory COMPUTER SECURITY

COMPUTER SECURITY RESOURCE CENTER RESOURCE CeNTeR

Lightweight Cryptography Standardization Process: NIST Selects Ascon

February 07,2023
f v
The NIST Lightweight Cryptography Team has reviewed the finalists based on their submission packages, status updates, third-party ‘ RELATED TOPICS
security analysis papers, and implementation and benchmarking results, as well as the feedback received during workshops and
through the lwc-forum. The decision was challenging since most of the finalists exhibited performance advantages over NIST Security and Privacy: lightweight cryptography

standards on various target platforms without introducing security concerns. o iale
Betp & ty Activities and Products: standards development

The team has decided to standardize the Ascon family for lightweight cryptography applications as it meets the needs of most use
cases where lightweight cryptography is required. Congratulations to the Ascon team! NIST thanks all of the finalist teams and the RELATED PAGES
community members who provided feedback that contributed to the selection.

News Item: Lightweight Cryptography Finalists Announced
Event: Lightweight Cryptography Workshop 2023

NIST’s next steps will be to:

e Publish NIST IR 8454, which describes the details of the selection and the evaluation process

e Work with the Ascon designers to draft the new lightweight cryptography standard for public comments

e Host a virtual public workshop to further explain the selection process and to discuss various aspects of standardization (e.g.,
additional variants, functionalities, and parameter selections) as well as possible extensions to the scope of the lightweight
cryptography project. The tentative dates for the workshop are June 21-22, 2023. More information will be provided in the
upcoming weeks.

NIST Lightweight Cryptography Team

Also see the related NIST news article, NIST Selects ‘Lightweight Cryptography' Algorithms to Protect Small Devices.

$ whoami

Ridley & Lawler, 2014

r

Ujinobu, 2020

RADI‘ATION

TAPS
RADIATION l

i |

0
| S
RADIATION RADIATION TAPS RADIATION , | ‘
: 3 5 CROSSTALK ~ L.ﬂ.ﬂ
ﬁ CROSSTALK l o l/
!
. ' . .
@ : COMMUNICATION LINES SWITCHING
< PROCESSOR : CENTER ° .
\ fises \ * L
Theﬂ HARDWARE
Copying Failure to connect to
Unauthorized access proper line
/ \ Cross coupling between
OPERATOR iines
————— SYSTEMS PROGRAMMER
Replace a protecting monitor with] ' -
R a non-protective one, or with Disable sof}ware"prot'ect'w features
one having “ins" Provide private “ins" to system
Failure of protection circuits Reveal protective measures Reveal protective measures /
Bounds registers REMOTE
Memory readiwrite protects MAINTENANCE MAN ACCESS CONSOLES
Prwelegzd mode Disable hardware protective Attachment of recorders
g ’ : SOFTWARE devices (platen impressions, ink
Contribute to software failures . : Use stand-alone utility ribbon, etc.) USER
Failure of protection features programs to access files Bug planted by individual of | dentification
Access control or to explore the system low authorization level Authentication
User identification Subtle modifications
Bounds control to software system

Etc.

SEE SHEET N° 8 SEE SHEET N2 35

TTIVH VLS LINT

bt

_“l
=
!
:P s
g
\
N

N 2
\'\‘ ?} d !
G y L}: : > OFF/CES -3
s A0 Ty, R A
Y ilo (-2
< Qi N s
m N SR
™ .

sN L133HS 33S

[

:

m National Cyber Security Centre
+><3¥ Ministry of Justice and Security

Guidelines for quantum-safe transport-layer encryption

These guidelines are written for an audience of architects responsible for specifying cryptographic
requirements. They can also be used in R&D and prototyping as well as for contract negotiations.
For a more general introduction, see NLNCSA's brochure and our own factsheet. For further details,
follow NIST, ETSI, IETF, and ISO standardisation efforts and read publications by ENISA and TNO.

Our recommendations target the early adopters who follow our advice to apply quantum-safe
cryptography to ensure long-term confidentiality against store-and-decrypt attacks. Signatures are
not part of these guidelines as they are not vulnerable to such attacks. The guidelines recommend
hybrid key exchange to mitigate potential vulnerabilities in novel post-quantum algorithms and
implementations. Besides a list of algorithms and recommended parameters, this document also
contains some questions to ask when choosing implementations.

Combine traditional algorithms with quantum-safe key encapsulation

Key agreement should rely on multiple algorithms. For other purposes, apply established methods.
You should use algorithms that have stood the test of time and that are future-proof. However,
post-quantum cryptography is a new and fast-moving field. As such, ensure that you can quickly
replace any algorithms and implementations that you rely on - so-called cryptographic agility.

Threat Modeling

A
| — |

=

Source Code
Web Application
i GEED
] =
Mobile Application API Server API to external parties

Database

Disclaimer:
all opinions are my own

Cryptographic competitions
An 1llustrated history of Ascon
Real-world challenges

Lessons from usable security

Back to the future of PBC

Cryptographic competitions

L

FIPS PUB 46

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION
1977 JANUARY 15

ENCRYPTION

STANDARD

CATEGORY: ADP OPERATIONS
SUBCATEGORY: COMPUTER SECURITY

O »
| | alol:
g m;:;mm;:,:;,’;'°H;

-
>

O

gmt
-§#W) C87

.
s r
Ed

=
z
E
E
5

i

et

AWT-4500
DEEP CRACK
ORBIT 61335A

9816 T03093.1A

i

. '\'

EREELRR SR RLEREERE

it
‘g0ula3- C86°

’.’.“....“.‘..’..Q...“‘
. 2B | ;] ¥

AL LLLLER LR L LA

P

AL

“‘“ﬁ ..“:‘*'ﬂ‘%\“m m‘Tn :

Cache-timing attacks on AES

Daniel J. Bernstein *

Department of Mathematics, Statistics, and Computer Science (M /C 249)
The University of Illinois at Chicago

Chicago, IL 60607-7045
djb@cr.yp.to

Abstract. This paper demonstrates complete AES key recovery from
known-plaintext timings of a network server on another computer. This
attack should be blamed on the AES design, not on the particular AES
library used by the server; it is extremely difficult to write constant-time
high-speed AES software for common general-purpose computers. This
paper discusses several of the obstacles in detail.

Keywords: side channels, timing attacks, software timing attacks, cache
timing, load timing, array lookups, S-boxes, AES

1 Introduction

This paper reports successful extraction of a complete AES key from a network
server on another computer. The targeted server used its key solely to encrypt
data using the OpenSSL AES implementation on a Pentium III.

The successful attack was a very simple timing attack. Presumably the same
technique can extract complete AES keys from the more complicated servers
actually used to handle Internet data, although the attacks will often require

Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024
Journal of Research of the National Institute of Standards and Technology

Development of the Advanced Encryption
Standard

Miles E. Smid

Formerly: Computer Security Division,
National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA

mesmid@verizon.net

Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication
discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic
algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the
U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s
development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the
Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and
Technology, where he was responsible for the AES development.

Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security
requirements, SKIPJACK.

Accepted: June 18, 2021
Published: August 16, 2021; Current Version: August 23, 2021

This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of
Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST.

https://doi.org/10.6028/jres.126.024

1. Introduction

In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it
was going to specify a new cryptographic algorithm standard for the protection of U.S. government and
commercial data. The current standard was showing signs of age and would not be up to the task of
providing strong security much longer. NIST could step aside and let some other entity manage the
development of new cryptographic standards, it could propose a short-term fix with a limited lifetime, or it
could establish a procedure to develop a completely new algorithm. In January 1997, NIST decided to
move forward with a proposal for developing an Advanced Encryption Standard (AES), which would be
secure enough to last well into the next millennium. In December of 2001, after five years of effort, the
finished standard was approved and published. The journey from initial concept to final standard was not
straightforward. This paper covers the motivation for the development of the AES, the process that was
followed, and the problems that were encountered and solved along the way. It documents a significant
milestone in the history of NIST’s computer security program, which will be celebrating its 50th
anniversary in 2022.

1 How to cite this article:
Smid ME (2021) Development of the Advanced Encryption Standard.
J Res Natl Inst Stan 126:126024. https://doi.org/10.6028/jres.126.024

NISTIR 8319

Review of the Advanced Encryption
Standard

Nicky Mouha

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8319

NIST

National Institute of
Standards and Technology
U.S. Department of Commerce

ler Modes of Operation

HOME Home Page

Guidelines for Submissions of Modes of Operation

Submissions should specify a mode of operation for a symmetric (secret) key block cipher algorithm. At a minimum, the mode should support underlying
block ciphers with key-block combinations of 128-128, 192-128, and 256-128 bits. However, the specification should be generic — i.e., written to handle
other key-block combinations, if they can be supported. Example modes include, but are not limited to, techniques for performing encryption, message
authentication, hashing, and random bit generation. It will be helpful to receive variations of Counter mode arising from alternative methods/guidelines for
prescribing the generation of counters.

NIST requests that submissions of modes of operation include the following six items:

cover sheet

mode specification

summary of properties

test vectors

performance estimates

intellectual property statements/agreements/disclosures.

These items are discussed below.

Cover Sheet

The cover sheet shall contain the following information:

name of submitted mode of operation;

principal submitter’'s name, telephone, fax, organization, postal address, e-mail address;
name(s) of auxiliary submitter(s);

name of mode’s inventor(s)/developer(s);

name of owner, if any, of the mode (typically, the owner will be the same as the submitter).

Mode Specification
A complete written specification of the mode of operation should be provided, including all mathematical equations, tables, diagrams, and parameters that

are needed to implement the mode. NIST encourages submitters to elaborate on the intended use(s) of the mode, the design rationale, the relevant
properties, proofs (if any), the comparison with other modes, and the mode’s overall advantages/disadvantages.

Summary of Properties

To assist NIST and the public to draw comparisons and contrasts between the various candidate modes, the submissions should include a table or outline
that identifies the following characteristics:

4 JULY 2001

DUAL COUNTER MODE

MIKE BOYLE

CHRIS SALTER

INTRODUCTION

For the past 18 months, the NSA has been developing a high-speed encryption mode for IP packets.
The mode that we designed is identical in many aspects to Jutla’s Integrity Aware Parallelizable Mode
(IAPM). There is one important difference in our proposal. In the IP world, a large number of
packets might arrive out of order. Integrity Aware Parallelizable Mode (IAPM) and the proposed
variations incur a large overhead for out of order packets[JU 01]. Each packet requires at least the
time to perform a full decryption to obtain an IV before decryption of the cipher can begin. This
note describes our solution to this problem.

First, we describe the basic mode and its features. We then describe how to implement this mode for
IPSec.

DUAL COUNTER MODE

Dual counter mode is a hybrid of ECB mode and counter mode. Let E represent encryption by a
codebook of width W. Let R, P, .., P; be j blocks of plaintext and let G, G, ..., G be the
corresponding ciphertext. Let f be a polynomial of degree W for a primitive linear feedback shift
register. Also, let {xi} be the sequence of fills generated by this polynomial. The first fill, x, is a
secret shared between the two peers. This initial fill is most easily derived from the key exchange!.
Dual counter mode can be described as follows:

j = # of datablocks

Fori=1,..,]
X — f(XH)
Ci=EP ®x)Dx;

Quite likely the cipherblocks will travel in packets. If the packets arrive in order, the receiver does not
lose track of the fill needed to decrypt the cipher.

TWO IMPLEMENTATION M ODES

We knew that many implementers would want to verify the data integrity of packets. This mode has
the property that any change to a ciphertext block causes the decrypted plaintext to be garbled. Thus
it is easy to add a checksum to verify data integrity.

1 Of course, care should be taken in producing this value. For example, the designers of the key exchange for IPsec used
secure hashes such as SHA-1 to isolate keying material.

A Note on NSA’s Dual Counter Mode of
Encryption

Pompiliu Donescu * Virgil D. Gligor ** David Wagner **~*
pompiliu@eng.umd.edu gligor@eng.umd.edu daw@cs.berkeley.edu

September 28, 2001

Abstract. We show that both variants of the Dual Counter Mode of
encryption (DCM) submitted for consideration as an AES mode of op-
eration to NIST by M. Boyle and C. Salter of the NSA are insecure with
respect to both secrecy and integrity in the face of chosen-plaintext at-
tacks. We argue that DCM cannot be easily changed to satisfy its stated
performance goal and be secure. Hence repairing DCM does not appear
worthwhile.

1 Introduction

On August 1, 2001, M. Boyle and C. Salter of the NSA submitted two variants
of the Dual Counter Mode (DCM) of encryption [1] for consideration as an AES
mode of operation to NIST. The DCM goals are: (1) to protect both the secrecy
and integrity of IP packets (as this mode is intended to satisfy the security goals
of Jutla’s IAPM mode [4]), and (2) to avoid the delay required before commenc-
ing the decryption of out-of-order IP packets, thereby decreasing the decryption
latency of IAPM. DCM is also intended to allow high rates of encryption.

The authors argue that DCM satisfies the first goal because “an error in a
cipher block causes all data in the packet to fail the integrity check”. DCM ap-
pears to satisfy the second goal because it maintains a “shared secret negotiated
during the key exchange,” which avoids the delay inherent to the decryption of
a secret IV before the first out-of-order packet arrival can be decrypted. The
authors note correctly that Jutla’s IAPM mode does not satisfy their second
goal.

In this note, we show that both variants of DCM are insecure with respect
to both secrecy and integrity in the face of chosen-plaintext attacks. Further, we
argue that DCM cannot be easily changed to satisfy its stated performance goal
for the decryption of out-of-order packets and be secure. We conclude since other
proposed AES modes satisfy the proposed goals for DCM, even if repairing DCM
is possible, which we doubt, such an exercise does not appear to be worthwhile.

! VDG Inc., 6009 Brookside Drive, Chevy Chase, MD 20815.

2 Electrical and Computer Engineering Department, University of Maryland, College
Park, Maryland 20742.

3 Computer Science Division, EECS Department, University of California Berkeley,
Berkeley, CA. 94720.

Cryptanalysis of OCB2

Akiko Inoue and Kazuhiko Minematsu

NEC Corporation, Japan
a-inoue@cj.jp.nec.com, k-minematsu@ah. jp.nec.com

Abstract. We present practical attacks against OCB2, an ISO-standard
authenticated encryption (AE) scheme. OCB2 is a highly-efficient block-
cipher mode of operation. It has been extensively studied and widely
believed to be secure thanks to the provable security proofs. Our attacks
allow the adversary to create forgeries with single encryption query of
almost-known plaintext. This attack can be further extended to powerful
almost-universal and universal forgeries using more queries. The source
of our attacks is the way OCB2 implements AE using a tweakable block-
cipher, called XEX™. We have verified our attacks using a reference code
of OCB2. Our attacks do not break the privacy of OCB2, and are not
applicable to the others, including OCB1 and OCBS3.

Keywords: OCB, Authenticated Encryption, Cryptanalysis, Forgery,
XEX

1 Introduction

Authenticated encryption (AE) is a form of symmetric-key encryption that pro-
vides both confidentiality and authenticity of messages. Now it is widely accepted

@ SHA-2 %2 SHA-3 |2

SHA -2 /- 3 b,

)
|

/)]
l""""
A
""""L._.J"I

i - '.'.'.'.'.'.'.'.'.'".'."'
SECURE ' ' l ZZ

- M 00010

01011010

A Vulnerability in Implementations of SHA-3,
SHAKE, EADSA, and Other NIST-Approved
Algorithms

[0000—0001—8861—782X] . . B B B
and Christopher Celi2[0000-0001—-9979—6819]

Nicky Mouha!®
1 Strativia, Largo, MD, USA
nicky@mouha.be
2 National Institute of Standards and Technology, Gaithersburg, MD, USA
christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in several implementa-
tions of the Secure Hash Algorithm 3 (SHA-3) that have been released
by its designers. The vulnerability has been present since the final-round
update of Keccak was submitted to the National Institute of Standards
and Technology (NIST) SHA-3 hash function competition in January
2011, and is present in the eXtended Keccak Code Package (XKCP) of
the Keccak team. It affects all software projects that have integrated
this code, such as the scripting languages Python and PHP Hypertext
Preprocessor (PHP). The vulnerability is a buffer overflow that allows
attacker-controlled values to be eXclusive-ORed (XORed) into memory
(without any restrictions on values to be XORed and even far beyond the
location of the original buffer), thereby making many standard protection
measures against buffer overflows (e.g., canary values) completely ineffec-
tive. First, we provide Python and PHP scripts that cause segmentation
faults when vulnerable versions of the interpreters are used. Then, we
show how this vulnerability can be used to construct second preimages

BlaKE12

We are proud to announce

D lazing-fast
KEccAK on
12 rounds.

BlaKE12 (/ bleiki: twelv/), or KECCAK reduced
to 12 rounds, is a blazing-fast cryptographic
hash function with a rock-solid security

foundation and suitable to a wide-range of
platforms.

Keccak team, 2022

P
us
L
|
C
IN
7
eR
NET
9,
(!
C
C
L
O
(A
O

F
L
m
/\
Q
SL/
m
k m
e

=
N
o\
L)Y
e e
\
¢ \/
‘L.

Snowden Disclosures

* News stories came out strongly suggesting that Dual
EC had a trapdoor inserted by NSA

* This put the previous discussions in an entirely new
light.

 We responded by:

* |ssuing an ITL bulletin telling everyone to stop
using Dual EC DRBG until further notice.

» Putting all three 800-90 documents up for public
comment

NIST Cryptographic Standards and Guidelines
Development Process

Report and Recommendations of the
Visiting Committee on Advanced Technology
of the National Institute of Standards and Technology

July 2014

VOAT

NISTIR 7977

NIST Cryptographic Standards and
Guidelines Development Process

Cryptographic Technology Group

This publication is available free of charge from:
http://dx.doi.org/10.6028/NIST.IR.7977

NST

National Institute of
Standards and Technology
U.S. Department of Commerce

PHC Lessons LLearned

Algorithm competitions, when parameterised appropriately,
work

* (Collaborative evolution of new crypto mechanisms

Can be run 1n complete openness

* No need for behind-closed-doors deliberations or government
intervention

Dealing with hypothetical but practically irrelevant
weaknesses 1s a problem when the cost to mitigate 1s
significant

* Damned 1f you do, damned 1f you don’t

Cryptographic competitions

Daniel J. Bernstein!»?

! Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7045, USA
* Horst Gortz Institute for IT Security, Ruhr University Bochum, Germany
djb@cr.yp.to

Abstract. Competitions are widely viewed as the safest way to select
cryptographic algorithms. This paper surveys procedures that have been
used in cryptographic competitions, and analyzes the extent to which
those procedures reduce security risks.

Keywords: cryptography, competitions, DES, AES, eSTREAM, SHA-3,
CAESAR, NISTPQC, NISTLWC

1 Introduction

The CoV individual reports point out several shortcomings and pro-
cedural weaknesses that led to the inclusion of the Dual EC' DRBG
algorithm in SP 800-90 and propose several steps to remedy them. . ..
The VCAT strongly encourages standard development through open

Research Assurance

— HACKATHON CHALLENGE —
BRIDGING THE GAP BETWEEN MAKING AND BREAKING

Arne Padmos

Context. Compared to the popularity of both hackathons and CTF challenges, as
well as the impact that AES has had and that NIST’s PQC selection is expected to
have, very little research has been done on what we call, for lack of an established
term, adversarial engineering design competitions. This is unfortunate, as such
competitions appear to be a useful tool for assured technology transfer. Given that
NIST will review their guidelines for cryptographic standards development this
year, it would be opportune as a WEIS community to explore and provide insights
into how the shape of competitions can influence incentives and drive assurance.

Challenge. Can we use competitions to improve the state of security, and if so, how
might we structure competitions to include both defensive and offensive aspects in
order to bridge the divide between the making and breaking of computer systems?

Concept. Competitions that focus on breaking stuff are a common occurrence at
many security conferences, reflecting our field’s focus on looking for problems

An 1llustrated history of Ascon

Grain - A Stream Cipher for Constrained
Environments

Martin Hell', Thomas Johansson' and Willi Meier?

! Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden
{martin,thomas}@it.1lth.se
2 FH Aargau, CH-5210 Windisch, Switzerland

meierw@fh-aargau.ch

Abstract. A new stream cipher, Grain, is proposed. The design tar-
gets hardware environments where gate count, power consumption and
memory is very limited. It is based on two shift registers and a nonlinear
output function. The cipher has the additional feature that the speed
can be increased at the expense of extra hardware. The key size is 80
bits and no attack faster than exhaustive key search has been identified.
The hardware complexity and throughput compares favourably to other
hardware oriented stream ciphers like EO and A5/1.

1 Motivation

When designing a cryptographic primitive there are many different properties
that have to be addressed. These include e.g. speed, security and simplicity.
Comparing several ciphers, it is likely that one is faster on a 32 bit processor,
another is faster on an 8 bit processor and yet another one is faster in hardware.
The simplicity of the design is another factor that has to be taken into account,
but while the software implementation can be very simple, the hardware imple-
mentation might be quite complex.

There is a need for cryptographic primitives that have very low hardware
complexity. An RFID tag is a typical example of a product where the amount of
memory and power is very limited. These are microchips capable of transmitting
an identifying sequence upon a request from a reader. Forging an RFID tag can
have devastating consequences if the tag is used e.g. in electronic payments and
hence, there is a need for cryptographic primitives implemented in these tags.
Today, a hardware implementation of e.g. AES on an RFID tag is not feasible
due to the large number of gates needed. Grain is a stream cipher primitive that
is designed to be very easy and small to implement in hardware.

Many stream ciphers are based on linear feedback shift registers (LFSR), not
only for the good statistical properties of the sequences they produce, but also for
the simplicity and speed of their hardware implementation. Several recent LFSR
based stream cipher proposals, see e.g. [6, 7] and their predecessors, are based on
word oriented LFSRs. This allows them to be efficiently implemented in software

PRESENT: An Ultra-Lightweight Block Cipher

A. Bogdanov!, L.R. Knudsen?, G. Leander!, C. Paar!, A. Poschmann!,
M.J.B. Robshaw?, Y. Seurin®, and C. Vikkelsoe?

! Horst-Gortz-Institute for IT-Security, Ruhr-University Bochum, Germany
2 Technical University Denmark, DK-2800 Kgs. Lyngby, Denmark
3 France Telecom R&D, Issy les Moulineaux, France
leander@rub.de, {abogdanov,cpaar,poschmann}@crypto.rub.de
lars@ramkilde.com, chv@Omat.dtu.dk
{matt.robshaw,yannick.seurin}@orange-ftgroup.con

Abstract. With the establishment of the AES the need for new block
ciphers has been greatly diminished; for almost all block cipher appli-
cations the AES is an excellent and preferred choice. However, despite
recent implementation advances, the AES is not suitable for extremely
constrained environments such as RFID tags and sensor networks. In
this paper we describe an ultra-lightweight block cipher, PRESENT. Both
security and hardware efficiency have been equally important during the
design of the cipher and at 1570 GE, the hardware requirements for
PRESENT are competitive with today’s leading compact stream ciphers.

1 Introduction

One defining trend of this century’s I'T landscape will be the extensive deploy-
ment of tiny computing devices. Not only will these devices feature routinely in
consumer items, but they will form an integral part of a pervasive — and unseen
— communication infrastructure. It is already recognized that such deployments
bring a range of very particular security risks. Yet at the same time the cryp-
tographic solutions, and particularly the cryptographic primitives, we have at
hand are unsatisfactory for extremely resource-constrained environments.

In this paper we propose a new hardware-optimized block cipher that has
been carefully designed with area and power constraints uppermost in our mind.
Yet, at the same time, we have tried to avoid a compromise in security. In
achieving this we have looked back at the pioneering work embodied in the
DES [34] and complemented this with features from the AES finalist candidate
Serpent [4] which demonstrated excellent performance in hardware.

At this point it would be reasonable to ask why we might want to design a
new block cipher. After all, it has become an “accepted” fact that stream ciphers
are, potentially, more compact. Indeed, renewed efforts to understand the design
of compact stream ciphers are underway with the eSTREAM [15] project and
several promising proposals offer appealing performance profiles. But we note a
couple of reasons why we might want to consider a compact block cipher. First,
a block cipher is a versatile primitive and by running a block cipher in counter

What’s needed in the 10T era is not more Kirtland’s
warblers and koalas, as wondertul as such animals
may be, but crows and coyotes. An animal that eats
only eucalyptus leaves, even if it outcompetes the
koala, will never become widely distributed.

THE SIMON AND SPECK FAMILIES OF
LIGHTWEIGHT Brock CIPHERS

Ray Beaulieu
Douglas Shors
Jason Smith
Stefan Treatman-Clark
Bryan Weeks
Louis Wingers

National Security Agency
9800 Savage Road, Fort Meade, MD 20755, USA

{rabeaul, djshors, jksmit3, sgtreat, beweeks, lrwinge}@tycho.ncsc.mil

19 June 2013

ABSTRACT

In this paper we propose two families of block ciphers, Simon and Speck, each
of which comes in a variety of widths and key sizes. While many lightweight
block ciphers exist, most were designed to perform well on a single platform
and were not meant to provide high performance across a range of devices. The
aim of SimoN and Speck is to fill the need for secure, flexible, and analyzable
lightweight block ciphers. Each offers excellent performance on hardware and
software platforms, is flexible enough to admit a variety of implementations on
a given platform, and is amenable to analysis using existing techniques. Both

Chapter 4

An Account of the ISO/IEC
Standardization of the Simon and Speck
Block Cipher Families

Tomer Ashur and Atul Luykx

Abstract Simon and Speck are two block cipher families published in 2013
by the US National Security Agency (NSA). These block ciphers, targeting
lightweight applications, were suggested in 20135 to be included in ISO/IEC 29192-2
Information technology—Security techniques—Lightweight cryptography—Part 2:
Block ciphers. Following 3.5 years of deliberations within ISO/IEC JTC 1 they
were rejected 1n April 2018. This chapter provides an account of the ISO/IEC
standardization process for Simon and Speck.

4.1 Introduction

By their very nature, cryptographic algorithms require large-scale agreement to
enable secure communication. Standardization by bodies such as ANSI, IEEE,
and ISO/IEC 1s important means by which industries and governments achieve

NISTIR 8114

Report on Lightweight Cryptography

Kerry A. McKay
Larry Bassham
Meltem S6nmez Turan
Nicky Mouha

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8114

NIST

National Institute of
Standards and Technology

U.S. Department of Commerce

NIST Cybersecurity White Paper CSYC.nist.gov

Profiles for the Lightweight Cryptography

Standardization Process

Larry Bassham

Cagdag Calik

Kerry McKay

Nicky Mouha

Meltem Sonmez Turan

Computer Security Division
Information Technology Laboratory

April 26, 2047

NIST

National Institute of
Standards and Technology

U.S. Deportment of Commerce

5

Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process

Table of contents

INEEOAUCTION. 1.ttt ettt e b e et e et e et e e bt e ebee e beeebeeenneeens 2
Requirements of Submission Packages.........ccccvevviiieiniiiiiiiiie et 3
2.1 COVET SHEELeiiiiiiie ittt ettt e et e e eabte e e st e e e seaeeas 3
2.2 Algorithm Specification and Supporting Documentation..............cccceveeevrreenveeeennne. 3
2.3 Source Code and TeSt VECLOTSccvuiiiriiiieeriiieeeiiiee ettt e e eiteeeeiiteeeiiee e e eieeeseaeeeeas 4
2.4 Intellectual Property Statements / Agreements / DiscloSUIescccceeevveeerciveeeennnenn. 4
2.4.1 Statement by Each SUbBMItter.........ccceeiiiiiiiiiiiiiie e 5
2.4.2 Statement by Patent (and Patent Application) OWNeEr(s).........cceeeveeererveeersnveeennnenn. 6
2.4.3 Statement by Reference/Optimized/Additional Implementations” Owner(s)........... 7
Minimum Acceptability REqUITEMENTScccveeiiiiiieiiiiieeciiie ettt e e 7
3.1 AEAD REQUITEIMENLSvvieeiiiieeiiiieeeiiieeeiieeeeereeesstteessesaeeesssseesssseeesssesesssssessnsnns 7
3.2 Hash Function ReqUIrementsccoocueeviieniiiniieniiiniieneeeec et 8
33 Additional Requirements for Submissions with AEAD and Hashing........................ 9
34 Design ReqUITEIMENLScceiuiiieiiiie ettt e eiiee e et e et e et e e et eeeeeeeeeenbeeeesneeeesneeeas 9
3.5 Implementation REQUITEMENTSccveiiiiiiiieiiiireeiieeeiieeeeereeeesvreeesreeeeeareeeenenas 10
351 AEAD ettt 10
3.5.2 Hash FUNCHON. ..ottt ettt et 13
Evaluation Criteria.......cooueiiiiiiiiieiieeiieesite ettt et ettt e bbb esateesabee e 14
4.1 Minimum Acceptability of the Submissionccooceeviiiniiiniiniiinie, 14
4.2 Side Channel and Fault Attack ResiStanceccccccevieeniieniieniienierec e 14
4.3 COSE ot sttt e e 15
4.4 PerfOIMANCEeeeiiieiitie ettt ettt e 15
4.5 Third-party ANALYSIS.......cceeeuriereiieeeiieeeieeeerteeeeeree e et e e e steeesensaeessneeeeenneeeesnnnes 15
4.6 Suitability for Hardware and Software Implementationscc.cccceeveeeevvieeenneenn. 15
EVvaluation PTOCESScoouiiiiiiiiiiiiieeiieete ettt ettt et et e e 15

NISTIR 8268 NISTIR 8369

Status Report on the First Round of the

NIST Lightweight .Cl')ofptography Status Report on the Second Round of
Standardization Process the NIST Lightweight Cryptography
Standardization Process

Meltem Sonmez Turan

Kerry A. McKay
Cagdas Calik)
Donghoon Chang Meltem Sonmez Turan
Larry Bassham Kerry McKay
Donghoon Chang
Cagdas Calik

Lawrence Bassham
Jinkeon Kang
John Kelsey

This publication is available free of charge from:
This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8369
https://doi.org/10.6028/NIST.IR.8268

National Institute of Standards and Technology
Standards and Technology U.S. Department of Commerce

U.S. Department of Commerce

CAq A . P1C; Pt Cea P:C; . T
S : ‘r S ‘r S : ¢ ; S ¢ ; S ¢ ; : — A
—> :»@-» »@—» :>® > —»@ I > —>® I : > 198
pa : pb pb : pb pb : pa
VKN 0%|K: 0*||1. K|0* K

Initialization Associated Data Plaintext Finalization

 Ag As . P1C Peg Ceg Pt C; T
S : ‘r S ‘r S : ; S ; S ; : — A
— =~ D> :>£9<L> *é‘l" *é‘l " 128
pa : pb pb : pb pb : pa
> rean : C » oo rean : ¢ > L. € > ¢ Il» >
VKN 0%k 0*||1. K|0* K

Initialization Associated Data Ciphertext Finalization

S
N
|

N

v
|
I
|
6:97
: 3

:) II’) II’)
prl + |p° po| P | P p
. ! C - _ C C L, C | C

Initialization Absorb Message Squeeze Hash

. My
) 0 4256
—> : -—»
pr|
IV||K[[0*
Initialization

M;_q M
o 1256 () 4256
hans >® > —>® -
a a
' o4 »;9 64 ﬁ}»
0*|1
Absorb Message
IVI[K[[M]

T
Y : IT
4
P 7
T
N A
) 128
P
—D
A
0* K

LTrosm—1 Loy

r

_>..--

)

pﬂ

r

Algorithms

This is a simple reference implementation of Ascon v1.2 as submitted to the NIST LWC competition that includes

e Authenticated encryption ascon_encrypt(key, nonce, associateddata, plaintext, variant="Ascon-
128") (and similarly decrypt) with the following 3 family members:

© Ascon-128
© Ascon-128a

© Ascon-80pq

* Hashing algorithms ascon_hash(message, variant="Ascon-Hash", hashlength=32) including 4 hash
function variants with fixed 256-bit (Hash) or variable (Xof) output lengths:

© Ascon-Hash
© Ascon-Hasha
o Ascon-Xof

© Ascon-Xofa

 Message authentication codes ascon_mac(key, message, variant="Ascon-Mac", taglength=16) including
5 MAC variants (from https://eprint.iacr.org/2021/1574, not part of the LWC proposal) with fixed 128-bit (Mac)
or variable (Prf) output lengths, including a variant for short messages of up to 128 bits (PrfShort).

© Ascon-Mac
© Ascon-Maca
© Ascon-Prf
© Ascon-Prfa

© Ascon-PrfShort

Key size Nonce size Tag size Digest

Finalist # Variants (bits) (bits) (bits) size (bits)
Accon 2 AEAD 128 128 128 --
2 hash -- -- -- 256
Elephant 3 AEAD 128 96 64-128 --
GIFT-COFB 1 AEAD 128 128 128 -
Grain-128aead 1 AEAD 128 96 64 --
ISAP 4 AEAD 128 128 128 --
2 AEAD 128 128 128 --
PHOTON-Beetle 1 hash B B B 556
Romulus 3 AEAD 128 128 128 --
1 hash -- -- -- 256
Snarkle 4 AEAD 128-256 128-256 128-256 --
P 2 hash - - - 256-384
TinyJambu 3 AEAD 128-256 96 64
EAD 12 12 12 --
Xoodyak 1 AEA 8 8 8

1 hash - - -- 256

The Selection Process

Fair evaluation of finalists is challenging.

* Assigning weights for different evaluation criteria (security, performance in software and
nardware, design maturity, amount of third-party analysis, IP issues, etc.)

* Different security claims, different functionality, attacks with different complexities etc.
* Limited resources (not all algorithms got the same attention from the crypto community)

Decision relied on publicly available analysis and benchmarking results.

In February 2023, NIST announced the Ascon family as the winner.
* Large amount of third-party analysis
 AEAD variants were listed part of the CAESAR portfolio for ‘lightweight applications’.
* No tweak
 Performance advantage over NIST standards in software and hardware

lightweight devices communicate with lightweight devices, but also for scenarios
where many lightweight devices communicate with high-end devices (e.g., a back-end
server), a typical use case in many applications including the Internet of Things (IoT).
T'his is especially true in scenarios where protection against side-channel attacks is
needed.

4 Planned tweak proposals

We do not plan any tweaks for ASCON.

Acknowledgments. The authors would like to thank all researchers contributing
to the design, analysis and implementation of ASCON. In particular, we want to thank
Hannes Gross and Robert Primas for all their support and various implementations
of ASCON.

Part of this work has been supported by the Austrian Science Fund (FWF'): P26494-
N15 and J 4277-N38.

References

1] A. Adomnicai, J. J. Fournier, and L. Masson. “Masking the Lightweight Authen-
ticated Ciphers ACORN and Ascon in Software”. Cryptology ePrint Archive,

e Added a new hash function Ascon-Hasna and extendable output function
AscoN-XoFa to the Ascon familiy.

Compared to Ascon-HasH and AscoN-XoF, AscoN-HasHA and AscoN-XoFa
use 8 rounds during absorbing and most of the squeezing instead of 12, while
the transition between absorbing and squeezing still uses 12 rounds. We have
reduced the number of rounds where the current analysis shows a very large
security margin in order to get a less conservative and faster variant that
pairs nicely with Ascon-128a. Moreover, we hope that these less conserva-
tive variants Ascon-Hasna and AscoN-Xora encourage more cryptanalysis
of the hash function in the last round of the standardization process.

asconvl12.pdt:

e Updated Chapter 1 to introduce also the new variants Ascon-Hasna and
ASCON-XOFA

e Replaced the algorithm X, ,, with &}, ,;, in order to define new variants
Ascon-HasHua and Ascon-Xora in Chapter 2. &}, ,,; is identical to &}, , , it
a=>bandso X, ,, = X},

e Added Ascon-HasHa to the recommended parameter sets at second place for
hash function in Section 2.2.

o Added Ascon-128a and Ascon-HasHaA as recommended pairing for authen-
ticated encryption and hashing in Section 2.2.

The recommendation for NIST includes Ascon-Hash
combined with Ascon-128 or Ascon-128a.

— Ascon-Hash AND (Ascon-128 OR Ascon-128a)
— Ascon-Hash AND (Ascon-128 XOR Ascon-128a)
— (Ascon-Hash AND Ascon-128) OR Ascon-128a
— (Ascon-Hash AND Ascon-128) XOR Ascon-128a

Next Steps

O Publication of the third—round status update

O Sixth Lightweight Cryptography Workshop in June 21-22 2023 (virtual)
Submission deadline: May 1, 2023

Aim: to explain the selection process, and to discuss various aspects of lightweight
cryptography standardization, such as

* Which ASCON variants to standardize? All of subset ? XOF instead of hash?

* Additionally functionality, e.g. dedicated MAC?

 Support for additional parameter sizes? e.g., larger nonce, shorter tags

O Publication of draft standard (in 2023)

Competition

Algorithm

Ascon-128

Ascon-128a

Ascon-96

Ascon-80pg

Ascon-Hash

Ascon-Hasha

Ascon-XOF

Ascon-XOFa

800c0600
00000000

600c0800
00000000

CAESAR

80400c06
00000000

80800c08
00000000

80400c06
00000000

80800c08
00000000

80400c06
00000000

80800c08
00000000

a0400c06
XX XX XXX X

00400c00
00000100

00400c00
00000000

NIST LWC

Vi vVi.1i Vi.2 vVi1i.2 vVi1i.2
15-03-2014 29-08-2015 15-09-2016 29-03-2019 27-09-2019

80400c06
00000000

80800c08
00000000

a0400c06
XX X XX XX X

00400c00
00000100

00400c00
00000000

vVi.2
17-05-2021

80400c06
00000000

80800c08
00000000

a0400c06
XX X X XXX X

00400c00
00000100

00400cO04
00000100

00400c00
00000000

00400cO04
00000000

Competition NIST LWC

Algorithm

Ascon-MAC - — S — _ -

Ascon-MACa - S S - - -

Ascon-PRF - — S - _ -

Ascon-PRFa - S S - - _

Ascon-PRFshort — — S - _ -

Algorithm

IACR

03-12-2021

GitHub

21-09-2022

GitHub

24-03-2023

Ascon-MAC

Ascon-MACa

Ascon-PRF

Ascon-PRFa

Ascon-PRFshort

80808c00
XXX XXX XX

80808c00
XXX XXX X X

80Oxx4cCcxX
00000000

80808c00
00000080

80808c04
00000080

80808c00
00000000

80808c04
00000000

80xx4c80
00000000

80808c00
00000080

80808c04
00000080

80808c00
00000000

80808c04
00000000

80OxxX4cCcxX
00000000

int crypto_prf(unsigned charx out, unsigned long long outlen,

const unsigned char*x 1n, unsigned long long i1nlen,
const unsigned charx k) {

if (inlen > 16 || outlen > 16 || outlen > CRYPTO_BYTES) return -1;

/* load key x/

const uinté4_t KO = LOADBYTES(k, 8);

const uinté4_t K1 LOADBYTES(k + 8, 8);

/* initialize x/

ascon_state t s;

s.x[@] = ASCON_PRFS_IV | (uinté4_t)(inlen x 8) << 48;
s.x[1] = KO;
s.xL2] = Kil:
s.x1l3] = @;
s.xl4] = 02

printstate("initial value", &s);

Real-world challenges

Why Cryptosystems Fail

Ross Anderson
University Computer Laboratory

Pembroke Street, Cambridge CB2 3QG
Email: rjai4@cl.cam.ac.uk

Abstract

Designers of cryptographic systems are at a disadvantage to
most other engineers, in that information on how their sys-
tems fail is hard to get: their major users have traditionally
been government agencies, which are very secretive about
their mistakes.

In this article, we present the results of a survey of the
failure modes of retail banking systems, which constitute
the next largest application of cryptology. It turns out that
the threat model commonly used by cryptosystem designers
was wrong: most frauds were not caused by cryptanalysis or
other technical attacks, but by implementation errors and
management failures. This suggests that a paradigm shift
is overdue in computer security; we look at some of the al-
ternatives, and see some signs that this shift may be getting
under way.

quiries are conducted by experts from organisations with a
wide range of interests - the carrier, the insurer, the man-
ufacturer, the airline pilots’ union, and the local aviation
authority. Their findings are examined by journalists and
politicians, discussed in pilots’ messes, and passed on by
flying instructors.

In short, the flying community has a strong and insti-
tutionalised learning mechanism. This is perhaps the main
reason why, despite the inherent hazards of flying in large
aircraft, which are maintained and piloted by fallible hu-
man beings, at hundreds of miles an hour through congested
airspace, in bad weather and at night, the risk of being killed
on an air journey is only about one in a million.

In the crypto community, on the other hand, there is
no such learning mechanism. The history of the subject
(K1}, [W1]) shows the same mistakes being made over and

over again; in particular, poor management of codebooks
Y Y Y. L.yt

VL 2¢- X

A HISTORY OF US. COMMUNICATIONS SECURITY (U)
{The David GG. Boak Lectures)

HANDLING INSTRUCTIONS

1. This publication cansists of covers and numbered pages 1 to 101 inclusive. Verify presence of each
page upon receipt,

2. Formal authorization for access to-SECRET material is required for personnel to have access
to this publication.

3. This publication will not be released cutside govermment channels without approval of the Di-
rector, National Security Agency.

4. Extracts from this publication may be made for classroom ¢r individual icstruction purposes
only. Such extracts will be classified SECRET NOFORN and accounted for locally until de-

stroyed.

5. This publication will not be earried in aircraft for uae therein.

NATIONAL SECURITY INFORMATION
Unanthorized Disciosore Subject to Criminal Sanctions

NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MARYLAND 20755

Revised July 1973

Choasified by Director, NSA, pursuast to NSA, Manoal 123-2,
Exampt rem General Declasaifieation Schedule

of Exoentive Order 11652 Exempt Categery 2,
Decinmifcstion date canpet be determined.

~SECRET— oriGivaL 1
Reverse (Page 2) Blank

" DECLASSITIED UNDER AUTHORITY OF THE _
INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL, |
 E.O. 13526, SECTION 5.3(b)(3) i

‘ ISCAP APPEAL NO. 2009-049, document no. 1 :
| DECLASSIFICATION DATE: October 14, 2015 |

A HISTORY
OF
U.S. COMMUNICATIONS SECURITY (U)

THE DAVID G. BOAK LECTURES

VOLUME II

NATIONAL SECURITY AGENCY
FORT GEORGE G. MEADE, MARYLAND 20755

The information contained in this publication will not be disclbsed to foreign nationals or their representatives
without express approval of the DIRECTOR, NATIONAL SECURITY AGENCY. Approval shall refer
specifically to this publication or to specific information contained herein.

JULY 1981

CLASSIFIED BY NSA/CSSM 123-2
REVIEW ON 1 JULY 2001

DECLASSIFIED UNDER AUTHORITY OF THE
INTERAGENCY SECURITY CLASSIFICATION APPEALS PANEL,
E.O. 13526, SECTION 5.3(b)(3)

ISCAP APPEAL NO. 2009-049, document no. 2 |
DECLASSIFICATION DATE: October 14, 2015 '

NOT RELEASABLE TO FOREIGN NATIONALS

—SECRET

HANDLE VIA COMINT CHANNELS ONLY

ORIGINAL
{Reverse Blank)

IS ’ <:'¢5

.

T 2 gl 2 o DA e

-jﬂ' e

Y Vi :
__r,,-f.vr-t“f'»!‘-f'-f’=

—]

NSNS

Scott Bluerock, 2006

Security(X) > Security(X)

Outcome(X|ABCD) > Outcome(X|ABCD)

ccccccccccccccccc

Requirement R ()

N Assumption £ A

Specification SP

- | ~

System
S
\ % —
|
| Adversary A
Environment &£

bij noodgevaiien
112

Tom Nardi, 2019

MHST Educators, 2019

INTERFACE

rsif.royalsocietypublishing.org

RESea rCh 8 CrossMark

click for updates

Cite this article: Thimbleby H, Oladimeji P,
Cairns P. 2015 Unreliable numbers:

error and harm induced by bad design can be
reduced by better design. J. R. Soc. Interface
12: 20150685.
http://dx.doi.org/10.1098/rsif.2015.0685

Received: 31 July 2015
Accepted: 17 August 2015

Subject Areas:
medical physics

Keywords:
number entry, human error, dependable
systems, evaluating user interfaces

Author for correspondence:
Harold Thimbleby
e-mail: harold@thimbleby.net

Unreliable numbers:
error and harm induced by bad design
can be reduced by better design

Harold Thimbleby', Patrick Oladimeji' and Paul Cairns?

1College of Science, Swansea University, Swansea SA2 8PP, UK
“Department of Computer Science, University of York, York Y010 5DD, UK

Number entry is a ubiquitous activity and is often performed in safety- and
mission-critical procedures, such as healthcare, science, finance, aviation
and in many other areas. We show that Monte Carlo methods can quickly
and easily compare the reliability of different number entry systems. A sur-
prising finding is that many common, widely used systems are defective,
and induce unnecessary human error. We show that Monte Carlo methods
enable designers to explore the implications of normal and unexpected oper-
ator behaviour, and to design systems to be more resilient to use error. We
demonstrate novel designs with improved resilience, implying that the
common problems identified and the errors they induce are avoidable.

Science is a way of trying not to fool yourself. The first principle is that you must not

fool yourself, and you are the easiest person to fool.
—Richard P. Feynman [1, ch. 4]

1. Introduction

Number entry is often performed as a ‘simple’ subtask within a bigger task. For
instance, using a calculator typically requires entering a series of numbers and
operators. Unnoticed errors while entering the numbers would result in an
error in the calculation. To the user who needs to use a calculator and therefore
has no precise expectation of the result, this error is likely to go undetected and
escalate higher up into the user’s workflow or subsequent tasks.

As users of interactive systems, we have little idea how much our unnoticed
errors introduce inaccuracy or other problems. Our laboratory work [2]
suggests about 3.5% of numbers we enter (on conventional numeric keyboards)

EXECUTION
BRIDGE

ACTION
SPECIFICATION

&
‘)

-/,

(A
&)
& %
A o,
N o

A8
&
4.

GOALS

PHYSICAL INTERPRETATION

SYSTEM

EVALUATION
BRIDGE

SYSTEM DEVELOPMENT

Congress and Legislatures

Lobbying
Hearings and open meetings
Accidents

Government Reports
Legislation l T

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,
Insurance Companies, Courts

Regulations Certification Info.
gtan.?ard.s Change reports
Lert' I'Ca“orl‘_ Whistleblowers
egal penalties Accidents and incidents
Case Law
Company
Management
Safety Policy Status Reports
Standards Risk Assessments
Resources Incident Reports
Policy, stds. .
y Project

) Hazard Analyses >
Test Requirements Review Resul

eview Results Human Controller(s)
Implementation i T A
and assurance Automated |4
Safety Revised : Controller :
Reports operating procedures V Y :
Y Hazard Analyses — - '

]) Software revisions | Actuator(s) | @‘@
ManUfaCturlng Documenta“on Hardware rep|acements
Management Design Rationale .| Physical [|
. Process

Procedures

'

> Management =

Safety Standards Hazard Analyses
Progress Reports

Design,
Documentation

Safety Constraints
Standards

Test reports

Hazard Analyses
Safety-Related Changes
Progress Reports

SYSTEM OPERATIONS

Congress and Legislatures

Government Reports
Lobbying

Hearings and open
meetings

Accidents

Legislation

Government Regulatory Agencies
Industry Associations,
User Associations, Unions,

Insurance Companies, Courts
Re [A
gulations
Standards
Certification
Legal penalties
Case Law

Accident and incident
reports

Operations reports
Maintenance Reports
Change reports
Whistleblowers

Y

Company
Management

Safety Policy
Standards
Resources

Operations Reports

Operations
Management

Change requests
Audit reports

Work Instructions

Problem reports
Operating Assumptions

Operating Procedures

Operating Process

audits ™ and Evolution

work logs
inspections

Manufacturing

Problem Reports
Incidents

Change Requests
Performance Audits

Lessons from usable security

Challenges in Authenticated Encryption

Editor
Daniel J. Bernstein

Contributors (alphabetical order; affiliations included for identification only)
Jean-Philippe Aumasson (Kudelski Security, Switzerland)
Steve Babbage (Vodafone, UK)

Daniel J. Bernstein (University of Illinois at Chicago, USA;
Technische Universiteit Eindhoven, Netherlands)
Carlos Cid (Royal Holloway, University of London, UK)
Joan Daemen (STMicroelectronics, Belgium;
Radboud Universiteit, Netherlands)

Orr Dunkelman (University of Haifa, Israel)

Kris Gaj (George Mason University, USA)

Shay Gueron (University of Haifa, Israel; Intel, Israel)
Pascal Junod (HEIG-VD, Switzerland)

Adam Langley (Google, USA)

David McGrew (Cisco, USA)

Kenny Paterson (Royal Holloway, University of London, UK)
Bart Preneel (KU Leuven, Belgium)

Christian Rechberger (Danmarks Tekniske Universitet, Denmark)
Vincent Rijmen (KU Leuven, Belgium)

Matt Robshaw (Impinj, USA)

Palash Sarkar (Indian Statistical Institute, Kolkata, India)
Patrick Schaumont (Virginia Tech, USA)

Adi Shamir (Weizmann Institute, Israel)

Ingrid Verbauwhede (KU Leuven, Belgium)

17. July 2015 (workshop) + 1. March 2017 (white paper)

Revision 1.05

The work described in this report has in part been supported by the Commission of the European Commu-
nities through the H2020-ICT program under contract H2020-ICT-2014 no. 645421. The information in this
document is provided as is, and no warranty is given or implied that the information is fit for any particular
purpose. The user thereof uses the information at its sole risk and liability.

Contents

Executive summary
Audience

Framework and history

0 A brief introduction to authenticated encryption

0.1 Confidentiality
0.2 Integrity . . .
0.3 Performance .

1 The security target is wrong
1.1 Side-channel attacks—the security target istoolow
1.2 Birthday attacks—the security target istoolow
1.3 Data limits—the security target is too high
1.4 Attack economics—the security target is too high
1.5 Quantum computers—the security target istoolow

2 The interface is wrong

2.1 Streams . . .
2.2 Files
2.3 Noisy channels

2.4 Software engineering and hardware engineering

3 The performance

target is wrong

3.1 Denial-of-service attacks oL
3.2 Veryshortinputs
3.3 Higher-level protocolso

3.4 Flexibility . .
3.5 CPU evolution

4 Mistakes and malice
4.1 Error-prone designs

4.2 Unverifiability

4.3 Miscommunication of security prerequisites
4.4 Incorrect proofs L
4.5 Malicious cryptographic software and hardware

N =

UL W W

© © o o I N

15
15
15
15
16
16

—
£

99

e

5. B
)
] 150
84
78 08 117 5
N\ =
nguzee
78 0]
l >
oPERATE
= @

Al pemll
~J

Global Acceptability: While the statutory basis for NIST’s work 1n cryptography is the need for
protection of non-national security federal information systems, NIST standards are the
foundation of many information technology products and services that are developed by U.S.
suppliers and sold globally. NIST recognizes the role of its cryptographic standards in assuring

the competitiveness of U.S. industry 1n delivering these products and services, and 1s committed
to ensuring that its standards and guidelines are accepted internationally.

Usability: NIST aims to develop cryptographic standards and guidelines that help implementers
create secure and usable systems for their customers that support business needs and workflows,
and can be readily integrated with existing and future schemes and systems. Cryptographic
standards and guidelines should be chosen to minimize the demands on users and implementers
as well as the adverse consequences of human mistakes and equipment failures.

Continuous Improvement: As cryptographic algorithms are developed, and for the duration of
their use, the cryptographic community 1s encouraged to 1dentify weaknesses, vulnerabilities, or
other deficiencies 1n the algorithms specified in NIST publications. When serious problems are
identified, NIST engages with the broader cryptographic community to address them. NIST
conducts research 1n order to stay current, to enable new cryptographic advances that may affect

the suitability of standards and guidelines, and so that NIST and others can take advantage of
those advances to strengthen standards and guidelines.

Innovation and Intellectual Property (IP): While developing 1ts cryptographic standards and

PGPkeys =
PGPkeys
Name Yalidity Trust Creation Size
w B= Alma Whitten <almR2cs.cmu.edu> BN (NN 9/24/98 1024/2048 |~
v G Alma Whitten <alma@cs.crmu.edu> 1
A Alma Whitten <alma@cs.cru.edu’ 9724798
D == il Blanke <wib@pgp.com> |] | | s/14/97 1024 /4096
D = Brett 4. Thomas <bat@pgp.com> | | | 5/19/97 1024 /2048
D ®= Jason Bobier <jason@pgp.com> | | | 6/4/97 1024 /2059
D @2 Jeff Harrell <jeff@pgp.com> |] | | s/z0/97 1024 /2048
D O=n Jeffrey I. Schiller <jis@mit.edu> | | | 8/27/94 1024
P ®= jude shabry <jude@pgp.com> | | | | 6/9/97 1024 /2048
D oo Lloyd L. Chambers <lloyd@pgp.com> | | | 5/20/97 1024 /4096
D @2 Mark B. Elrod <elrod@pgp.com? | | | 6/4/97 1024/2048 [
D @2 Mark H. Weaver <mhw@pgp.com> | | | 6/10/97 1024 /2048 7
Z

[& File Edit LS00 Help

PGPtools 2=

PGPkeys Encrypt Sign Encrypt & Sign Decrypt/VYerify
DPrag users from this list to the Recipients list: Yalidity Trust Size 2)
G Michael lannamico <mji@pgp.com> | | | | 102474021 |~
[3 Noah Dibner Salzman <noah@cytachrome.com? |] | | 102472048
G MNoah Dibner Salzman <noah@pgp.com> |] |] 102472048
G PGP Support Key DSS <pgpsupport@pgp.com> | | |] 1024/1024
[3 Philip Nathan <philipn@pgp.com> | | [| 102472048
G Philip R. Zimmermann <prz@pgp.com> |] |] 102472048
G Pretty Good Privacy, Inc. Corporate Key |] |] 102472048
[3 Wil Price <wprice@pap.com> | | | | 102474000
G Will Price <wprice@primenet.com?> |] |] 102474000

w
Recipients: Yalidity Trust Size
G Jason Bobier <jbobier@prismatix.com?> |] |] 102472059 [~
Q Philip R. Zimmermann <prz@acm.org> | | |] 1024

w

— Options

Text Output

Force MacBinary

Cancel | “ 0K ll

Sign 3£S

Add Name...

Set Default D PGPkeys
PG Pu New Key...
) Info...

Revoke

ER

Import Keys... €M

b _ Export Keys...

FEE

Get Selected Key #G6
Send Selected Key 3K
Find New Keys 3 F

du>

TVE BEEN POSTING 1Y
PUBLIC KEY FOR 15 YEARS

NOLJ, BUT NO ONE. HAS
EVER ASKED ME FOR IT
OR USED IT FOR ANYTHING
AS FAR AS T (AN TELL.

Email

Local mailbox

| S—|
——

DNS server

'f

o
Personal computer

You

Email

ot

Online mailbox

'

il

Receiver's
mail server(s)

te

—

o
DNS server

il

Email
relay(s)

H

||

DNS server

Email

Online mailbox

!

Sender’'s
mail server(s)

ty

3
DNS server

—
 S—
1
|

DNS server

'
| |

Personal computer
A

Friend

Local mailbox

Email

Renaud et al., 2014

U Search projects Help Sponsors Login Register

ascon 0.0.9 v

pip install ascon (@ Released: Mar 24, 2023

Lightweight authenticated encryption and hashing

Navigation Project description

= Project description

Python implementation of Ascon

“O Release history
This is a Python3 implementation of Ascon v1.2, an authenticated cipher and hash function.

i :
& Download files https://github.com/meichlseder/pyascon

T Ascon
Project links

A Homepage Ascon is a family of authenticated encryption (AEAD) and hashing algorithms designed to be lightweight and easy to

implement, even with added countermeasures against side-channel attacks. It was designed by a team of
cryptographers from Graz University of Technology, Infineon Technologies, and Radboud University: Christoph

Statistics Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schlaffer.
View statistics for this project via Ascon has been selected as the standard for lightweight cryptography in the NIST Lightweight Cryptography
Libraries.io [4, or by using our public competition (2019-2023) and as the primary choice for lightweight authenticated encryption in the final portfolio of

dataset on Google BigQuery (4 the CAESAR competition (2014-2019).

Mitigations
likelihood & impact

Attack paths
prioritised scenarios

Architecture
data flow & trust zones

Threat events
hypothesised exploits

Key assets
targeted elements

Entry points
external interfaces

1 [oee]

Web Application

i

Mobile Application

l A l - =
47 | Threat Modeling

Source Code

API to external parties

S

Architectural diagrams

O

Processes

Where data will
change from one
form to another.

—_—

Data flows
Represents data
moving from one
part of the system
to elsewhere.

Data stores
Indicates data at
rest, i.e. a place

for longer storage.

Terminators
Also called actors

or external entities.

These are the
limits of analysis.

Trust zones

Can be drawn as
trust boundaries,
i.e. dotted lines

between elements.

Confidentiality
Integrity
Availability
Authentication
Authorisation

Accountability

Information disclosure
Tampering
Denial of service

Spoofing

Elevation of privilege

Repudiation

6.3 SR-2: Threat model
6.3.1 Requirement

A process shall be employed to ensure that all products shall have a threat model specific to
the current development scope of the product with the following characteristics (where
applicable):

a) correct flow of categorized information throughout the system,;

b) trust boundaries;

C) processes;

d) data stores;

e) interacting external entities;

f) internal and external communication protocols implemented in the product;

g) externally accessible physical ports including debug ports;

h) circuit board connections such as Joint Test Action Group (JTAG) connections or debug
headers which might be used to attack the hardware;

i) potential attack vectors including attacks on the hardware, if applicable;

j) potential threats and their severity as defined by a vulnerability scoring system (for
example, CVSS);

k) mitigations and/or dispositions for each threat;

I) security-related issues identified; and

m) external dependencies in the form of drivers or third-party applications (code that is not
developed by the supplier) that are linked into the application.

The threat model shall be reviewed and verified by the development team to ensure that it is
correct and understood.

The threat model shall be reviewed periodically (at least once a year) for released products
and updated if required in response to the emergence of new threats to the product even if
the design does not change.

Any issues identified in the threat model shall be addressed as defined in 10.4 and 10.5.

Components
Data flows
Crown jewels
Trust zones

Assumptions

Threats (STRIDE)
Prioritisation
Countermeasures
Security testing

Follow-up

Silent ‘pair programming’

— Don’t want to break the flow
— Switch every five minutes
— Apply the refinement approach

10 min. Outline the program’s structure as comments

What message(s) will you be sending/receiving?
Which algorithm(s) will you be using for this?

10 min. Write pseudocode to make your ideas tangible
20 min. Translate your pseudocode into Python code

https://pypl.org/p/ascon
$ pip install ascon

>>> import ascon

>>> ascon.[tab][tab]
>>> data = b"..."

>>> print(data.hex())

Mail your commented code to
ascon@arnepadmos.com

Phase 1 — Comments
Alignment of flows
and our threat model

Phase 2 — Pseudocode
Match of structure to
messages and threats

Phase 3 — Source code
Compare comments
to the functions used

Exploratory initial qualitative observations:

— Zero, one, or just a couple of parameters passed
— Wrapper functions taking a message as input
— Hardcoded or empty nonce/key, e.g. in wrapper
— Parameters to library appearing out of thin air

— No key diversification, error handling, etc.

#importing ascon

#create a string that contains the byte string
#sending encrypted data to the sensor
#decrypting the data

import ascon
def encrypt():
key = b"SECRETSAREHIDDEN"
message = b"hALLO DIT IS MIJN MESSAGE MET DE VOLGENDE WAARDE: "
nonce = bytes(16)
associateddata = b"RELATEDDATA"

X = ascon.encrypt(key, nonce, associateddata, message, variant="Ascon-80pq")
return Xx

#decrypting the data
def decrypt():
key = b"SECRETSAREHIDDEN"
nonce = bytes(16)
associateddata = b"RELATEDDATA™
y = ascon.decrypt(key, nonce, associateddata, x, variant="Ascon-80pqg")
return y

import ascon # Import the ASCON module
ascon = ascon.ASCON() # Create an ASCON object

data = b"" # Create an empty byte array

+

Loop 100 times
Add the current value of 1 to the data array

for i in range(9, 100):
data += bytes([i])

H

+

def send_encrypted_message(message): Define a function to send an encrypted message
ascon.send(ascon.encrypt(message)) # Encrypt the message and send it

H

Define a function to receive an encrypted message
Receive the message and decrypt it

def receive_encrypted_message():
return ascon.decrypt(ascon.receive())

+H

+

Define a function to send an encrypted acknoledgement
Encrypt the acknoledgement and send it

def send_encrypted_ack():
ascon.send(ascon.encrypt(b"\x06"))

+

+H

Define a function to receive an encrypted acknoledgement
Receive the acknoledgement and decrypt it

def receive_encrypted_ack():
return ascon.decrypt(ascon.receivel())

+

print(data.hex()) # Print the data in hexadecimal format

import ascon

def get_datal():
message = ascon.encrypt('give data')
sensor = " XX=XX=XX=XX-XX-XX'

data = ascon.decrypt(send(message,sensor)) # send message to mac sensor and encrypt + [...]

if data != NULL:
data 1s present so we send the data back
message = 'ack’
return data

elif data = NULL:
1if no resonse 1s given, try again
get_datal()

def processdata():
data = get_datal()
if data < 4.0:
ins_pump() # send prompt for pump to pump insulin
elif data > 7.0:
alert_message() # alert on screen that glucose is too high

PHASE 1

Sensor:
send sugarlevels, authentication, checksum
send ack received, authentication, checksum
send battery level // if battery 1is low send alert
log battery level // if abnormal send alert
log connection // if connection behaviour is abnormal drop connection for 10 min.

Pump:
send ack, authentication, checksum
log insulin injection

PHASE 2

check authentication by checking authentication message

check integrity by checking the checksum

check elevation of privilege by checking the log of the battery

PHASE 3

import ascon
from time import sleep
from time import perf_counter

There 1s a sensor and a pump, which 1s sending data from sensor to pump.
There will be a acknowledgement from pump to sensor.

The data will be send in integers.

Spoofing = act as an pump.

Tampering = interrupt data.

Information disclosure = intercept and capture sensor data.

DOS = battery drainage and send garbage.

#Psuedocode

Alaoal

def data_encrypt(key, nonce, associateddata, plaintext, data):

ascon.encrypt(key, nonce, associateddata, plaintext, variant="Ascon-128")
data = b"blahblahblah"

print(data.hex())

return data.hex

def data_decyrpt(key, nonce, associateddata, plaintext, data):

ascon.decrypt(key, nonce, associateddata, plaintext, variant="Ascon-128a")
data = b"blahblahblah"

print(data.hex())

return data.hex

#Sensor:

measure blood

create uid for message

encrypt message + uld

Send ecnrypted message to pump

1f ack with uid not received in less than 1@ seconds, send message again.
after ack: uid + 1

#Pump:

recelive data

decrypt data

send ack to sensor with uid

send insuline

1if uid 1s lower than or equal to last_uid, drop package
otherwise: send insuline and set last _uid to current uid
uid = 1

def sensor_send():
last_five = []
measurement = random.choice([1, 2, 3])
message = str(uid) + ':' + str(measurement)
b = message.encode('utf-8")
message = message.hex()

Random ideas for future work:

— Use of ‘AEAD’ and ‘XOF’, not ‘MAC’ or ‘hash’
— Define standard serialisation, e.g. AD |n | C| t
— Appropriate parameter ordering for functions
— Creation of a compatible user-friendly wrapper

— Impact of programming paradigm on output

RC 9265 (#40713) 2/17/82
Computer Science 6 pages

Using the ""Thinking-aloud" Method in Cognitive Interface Design

Clayton Lewis

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract: "'Thinking-aloud" is a2 method for studying mental processes in which participants
are asked to make spoken comments as they work on a task. The method is appropriate for
studying the cognitive problems that people have in learning to use a computer system. This

note discusses the strengths and weaknesses of the method, and gives some suggestions about
its use based on laboratory experience at Yorktown.

SCA Evaluation & Benchmarking of
Finalists in the NIST Lightweight
Cryptography Standardization Process

Jens-Peter Kaps
& Kris Gaj

/GEORGE
MASON

UNIVERSITY

How might we How would you
integrate usability like your designs
into our process? to be evaluated?

Back to the future of PBC

Next Steps

O Publication of the third—round status update

O Sixth Lightweight Cryptography Workshop in June 21-22 2023 (virtual)
Submission deadline: May 1, 2023

Aim: to explain the selection process, and to discuss various aspects of lightweight
cryptography standardization, such as

* Which ASCON variants to standardize? All of subset ? XOF instead of hash?

* Additionally functionality, e.g. dedicated MAC?

 Support for additional parameter sizes? e.g., larger nonce, shorter tags

O Publication of draft standard (in 2023)

:Pl C

Py Cs

P, C,

A
/l\
. - = o=

256

.

A
TN | TN
64 64 |
7 7 | > €/
12 0 §
P P P
256 ' 256 256
v v - v -
___/ ’<T> . ’<T> ___/ ___/
0*||K 1
C e Processin
Initialization S

Plaintext

K [|0*

)
12
P
1/2/8 . T
____/
Finalization

From: hi@arnepadmos.com

Sent: Sunday, October 9, 2022 5:13 PM

To: lightweight-crypto

Cc: lwc-forum@list.nist.gov

Subject: FINALIST OFFICIAL COMMENT: ASCON
Dear NIST,

Let me start by saying that | think Ascon would make a great selection for the NIST LWC standard. | do have several
comments:

**Ascon parameters®* -- While the 30 September 2022 status update about Ascon states that the authors 'consider
both Ascon-128 and Ascon-128a to be equally well-suited and secure choices', during both the CAESAR and LWC
competition, Ascon-128 has always been the primary recommendation in every version of the submitted specifications. |
believe that Ascon-128 should remain the primary recommendation, as | think that 'late' changes of key decisions -- such
as those made to Romulus -- are undesirable.

**Sessions and ratcheting™* -- In the latest Xoodyak update, the authors emphasise 'that API flexibility is an important
asset for a lightweight cryptographic primitive'. Specifically, they note the utility of support for sessions and rolling
subkeys. In personal communication, the Ascon team has shared that intermediate tags and ratcheting can be
implemented by reusing the MAC as the nonce and by using the non-masked half of the state as the new key. If Ascon is
selected, | believe it would be useful to standardise such features in an additional publication (see below).

Feature parity with SHAKE -- One year after SHA-3 was standardised as FIPS 202, an extension defining modes of
operation constructed around SHAKE was published as NIST SP 800-185. Key features of these modes are the support for
tuples and customisation strings. In addition to support for sessions and ratcheting, Ascon can also benefit from such

From a security point of view, an AEAD algorithm should ensure both the confidentiality of the
plaintexts (under adaptive chosen-plaintext attacks) and the integrity of the ciphertexts (under
adaptive forgery attempts). AEAD algorithms are expected to maintain security as long as the
nonce 1s unique (not repeated under the same key). Any security loss when the nonce 1s not unique
shall be documented, and algorithms that do not lose all security with repeated nonces may
advertise this as a feature.

The submitters are allowed to submit a family of AEAD algorithms, where members of the family
may vary 1n external parameters (e.g., key length, nonce length), or in internal parameters (e.g.,
number of rounds, or state size). The family shall include at most 10 members. The following
requirements apply to all members of the family.

An AEAD algorithm shall not specify key lengths that are smaller than 128 bits. Cryptanalytic
attacks on the AEAD algorithm shall require at least 2''? computations on a classical computer in
a single-key setting. If a key size larger than 128 bits 1s supported, it 1s recommended that at least
one recommended parameter set has a key size of 256 bits, and that its resistance against
cryptanalytical attacks is at least 22%* computations on a classical computer in a single-key setting.

AEAD algorithms shall accept all byte-string nputs that satisfy the input length requirements.
Submissions shall include justification for any length limits.

The family shall include one primary member that has a key length of at least 128 bits, a nonce
length of at least 96 bits, and a tag length of at least 64 bits. The limits on the input sizes (plaintext,
associated data, and the amount of data that can be processed under one key) for this member shall
not be smaller than 2°°-1 bytes.

ks; . The keystream bit generated at the ith step.

pclen . bit length of the plaintext/ciphertext with 0 < pclen < 264 .
m; : one data bit.

P . plaintext.

D; . the ith plaintext bit.

S; . state at the beginning of the ith step.

Si.;j . gth bit of state S;. For ACORN-128, 0 < 5 < 292.

T . authentication tag.

t . bit length of the authentication tag with 64 <t < 128.

1.2.3 Functions

Two Boolean functions are used in ACORN: maj and ch.

D (x&2) D (y&z) ;
r&y) & ((~x)&z) ;

maj(z,y, z)
ch(z,y, z)

|
)
&
&S
(1

1.3 ACORN-128

ACORN-128 uses a 128-bit key and a 128-bit initialization vector. The associ-
ated data length and the plaintext length are less than 2% bits. The authenti-
cation tag length is less than or equal to 128 bits. We recommend the use of a

128-bit tag.

1.3.1 The state of ACORN-128

The state size of ACORN-128 is 293 bits. There are six LE'SRs being concate-
nated in ACORN-128. The state is shown in Fig.1.1.

I’d rather not add a new, dedicated MAC
mode of operation unless it provides an
advantage that Ascon-AEAD can not. That
advantage should then be clearly stated.

The discussion of customization strings got me thinking.

When hashing with either ASCON-HASH or ASCON-XOF, the first block is pre-formatted with 8 bytes of IV / domain
separation material, including the desired output length in bits. The other 32 bytes are currently set to zero. The
permutation is applied and then absorbing begins. This first permutation invocation can be pre-computed if the
output length is known at compile time.

This leaves 32 bytes that could be used for algorithm names (e.g. "KMAC" or "KDF" or "TupleHash" or whatever)
and/or customisation strings. If the customisation data is too large for a single block, then the permutation can be
iterated to absorb the remaining bytes with a domain separation bit set to distinguish customisation data from
regular data.

Here is a pseudocode outline of one possible encoding with the algorithm name in the first block and the
customisation string absorbed separately:

IF len(AlgorithmName) > 32 THEN
AlgorithmName = ASCON-HASH(AlgorithmName)
ENDIF
FirstBlock = {8-byte IV} || pad-with-zeroes(AlgorithmName, 32)
S = ASCON_p(FirstBlock)
IF len(CustomString) > 0 THEN
C = pad-to-rate(CustomString || 1 || zeroes)
absorb C into S in rate-sized chunks, with the domain separation bit XOR'ed with 1 in each chunk
ENDIF
absorb the input data into S
squeeze the output data from S

An empty algorithm name and customisation string would be equivalent to the current behaviour.
Cheers,

Rhys.

A given instance, denoted TurboSHAKE|c|, takes as input:

e a message M, a byte string of variable length, and

e a domain separation parameter D, a byte with a value in the range [0x01, ..., OX7F]
in hexadecimal.

As a XOF, the output of TurboSHAKE|c| is unlimited, and the user can request as
many output bits as desired. It can be used for traditional hashing simply by generating
outputs of the desired digest size.

TurboSHAKE produces unrelated outputs on different tuples (¢, M, D). For a given
capacity, the value D is meant to provide domain separation, that is, for two different val-

ues D1 # Dy, TurboSHAK.

Sle](+, D1) and TurboSHAKE|c|(-, D2) act as two independent

functions of M. We believe the range of D to be sufficient to cover all use cases.
Users that do not require multiple instances can take as default D = 0x1F.

Named instances In addition, we define:

e TurboSHAK]

128 as TurboSHAKI]

e TurboSHAK]

Procedure 'To compute TurboSHAKE

256 as TurboSHAK]

Klc = 256], and

Kle = 512].

c|(M, D), proceed as follows. Let R = 200 — ¢/8

be the rate in bytes and f the KECCAK-p[1600, n, = 12| permutation [60].

1. Input preparation

Table 2.3.: Initial values for Isapr instances in hex notation.

1 0*
O>l<
O*
01 80 4001 0C01060C 00"

02 80 4001 0C01060C 00"
03 80 4001 0C01060C 00"

>
XA
~
e
~
™
92
u
92
o
92
t1
2
~

[sap-P-HTs

St,58,SE,SK

~
>
N
XA
~
s
~
s}
92
T
92
™
92
tr1
92
~

A
tr
W
>
~
T
~
os)
9]
T
9p)
ov
9p)
wsl
9p)
A

>

Isap-A-128A

~
>

A
tr1

01 80 9001 10010808 00*
02 80 9001 10010808 00*
03 80 9001 10010808 00*

2>

Isap-K-128A

A
tr1

01 80 4001 0COCOCOC 00"
02 80 4001 0COCOCOC 00"
03 80 4001 0COCOCOC 00"

>

Isap-A-128

~
>

2
tr1

01 80 9001 140C0COC 00*
02 80 9001 140C0COC 00*
03 80 9001 140C0COC 00*

>

Isap-K-128

~
>

| G D G N GE— | | Y I U D — | D D G N S— | | G D G N GE— | | Y D U D G—

A
tr

2.6. On Hash Functions using Ascon-p or Keccak-p|400]

Since Isap is based on either Ascon-p or Keccak-p|400], it lends itself to pairing with
already specified hash functions using the same permutations. In the case of Isap-A-128a
and Isapr-A-128, we suggest a pairing with the hash function AsconHasH specified in the

As 1llustrated by BLINKER, Strobe, SHOE, and Cyclist,
sponges can be the basis for simple, lightweight two
party half-duplex record protocols. Support for tuples
and customisation strings — e.g. through additional
domain separation constants and/or padding rules —
can disambiguate directionality, metadata, headers,
and protocol types.

Parsing ambiguities in authentication and key
establishment protocols

Liqun Chen Chris J. Mitchell
Hewlett-Packard Laboratories Royal Holloway
Filton Road University of London
Stoke Gifford Egham
Bristol BS34 8QZ, UK Surrey TW20 0EX, UK
liqun.chen@hp.com c.mitchell@rhul.ac.uk

30th September 2008

Abstract

A new class of attacks against authentication and authenticated key estab-
lishment protocols is described, which we call parsing ambiguity attacks. If
appropriate precautions are not deployed, these attacks apply to a very wide
range of such protocols, including those specified in a number of international
standards. Three example attacks are described in detail, and possible gen-
eralisations are also outlined. Finally, possible countermeasures are given,
as are recommendations for modifications to the relevant standards.

1 Introduction

Over the last four years a number of new attacks have been published on
long-established and apparently stable standardised authenticated key es-
tablishment protocols. The origin of these protocols can be traced back to
the seminal paper of Needham and Schroeder [24], and the protocols con-
cerned had been widely studied and were believed to be secure. Indeed, the
first edition of the international standard for key establishment mechanisms
using symmetric cryptography, ISO/IEC 11770-2, appeared in 1996 [8], and
no problems were identified until 2004.

However, things have changed in recent years, with the publication of a
number of attacks (including a range of ‘type attacks’) on two standardised
protocols. The attacked protocols (mechanisms 12 and 13 of ISO /TEC 11770-
2) both assume that the two parties who wish to establish a shared secret
key already share a secret key with a trusted third party (acting as a key
translation centre).

ALPACA: Application Layer Protocol Confusion -
Analyzing and Mitigating Cracks in TLS Authentication

Marcus Brinkmann! , Christian Dresenz, Robert Mergetl, Damian Poddebniak?, Jens Miiller!, Juraj
Somorovsky3, Jorg Schwenk!, and Sebastian Schinzel?

'Ruhr University Bochum
>Miinster University of Applied Sciences
3Paderborn University

Abstract

TLS is widely used to add confidentiality, authenticity and
integrity to application layer protocols such as HTTP, SMTP,
IMAP, POP3, and FTP. However, TLS does not bind a TCP
connection to the intended application layer protocol. This
allows a man-in-the-middle attacker to redirect TLS traffic
to a different TLS service endpoint on another IP address
and/or port. For example, if subdomains share a wildcard
certificate, an attacker can redirect traffic from one subdomain
to another, resulting in a valid TLS session. This breaks
the authentication of TLS and cross-protocol attacks may be
possible where the behavior of one service may compromise
the security of the other at the application layer.

In this paper, we investigate cross-protocol attacks on TLS
in general and conduct a systematic case study on web servers,
redirecting HTTPS requests from a victim’s web browser to
SMTP, IMAP, POP3, and FTP servers. We show that in
realistic scenarios, the attacker can extract session cookies
and other private user data or execute arbitrary JavaScript in
the context of the vulnerable web server, therefore bypassing
TLS and web application security.

We evaluate the real-world attack surface of web browsers
and widely-deployed email and FTP servers in lab experi-
ments and with internet-wide scans. We find that 1.4M web
servers are generally vulnerable to cross-protocol attacks, i.e.,
TLS application data confusion is possible. Of these, 114k
web servers can be attacked using an exploitable application
server. Finally, we discuss the effectiveness of TLS exten-
sions such as Application Layer Protocol Negotiation (ALPN)
and Server Name Indiciation (SNI) in mitigating these and
other cross-protocol attacks.

1 Introduction

TLS. With Transport Layer Security (TLS) [56], confidential
and authenticated channels are established between two com-
munication endpoints. In typical end-user protocols, such as
HTTP, SMTP, or IMAP, the TLS server authenticates to the

Cross-Origin HTTPS Request

T POST /
Host: www.bank.com

Origin' Cookie: secret
. HELP <script>reflect()</script>

s O

www.bank.com:443
www.attacker.com
A

2 (ericzon]
W

ftp.bank.com:990

__ | Cross-Protocol FTPS Response

Y
@ Option 2: Download Attack

HTTP/1.1 200 OK
<script>stored()</script>

.:3’ — —

Origin: Option 1:
www.bank.com | T e e e Upload Attack
Unknown command: Cookie: secret
<script>reflect ()</script>
Victim Browser MitM Application Services

Figure 1: Basic idea behind application layer cross-protocol
attacks on HTTPS. A MitM attacker leads the victim to an
attacker-controlled website that triggers a cross-origin HTTPS
request with a specially crafted FTP payload. The attacker
then redirects the request to an FTP server that has a certificate
compatible with the web server. The attack either (1) uploads
a secret cookie to FTP, or (2) downloads a stored malicious
JavaScript file from FTP, or (3) reflects malicious JavaScript
contained in the request. In case (2) and (3), the JavaScript
code is executed in the context of the targeted web service.

client by presenting an X.509 certificate. In this setting, the
server is identified by the Common Name (CN) field or the
Subject Alternate Name (SAN) extension in the certificate,
which contains one or more hostnames or wildcard patterns
(e.g., *.bank.com). As part of the certificate validation, the
client confirms that the destination of the request matches the
CN or SAN of the certificate.

Since TLS does not protect the integrity of the TCP con-
nection itself (i.e., source IP & port, destination IP & port), a
man-in-the-middle (MitM) attacker can redirect TLS traffic
for the intended TLS service endpoint and protocol to another,
substitute TLS service endpoint and protocol. If the client
considers the certificate of the substitute server to be valid
for the intended server, for example, if wildcard certificates

USENIX Association

30th USENIX Security Symposium 4293

Designing cryptographic algorithms

Reducing a too large security margin

m Block ciphers: reducing number of rounds might be OK
m Obvious option considered by cryptanalysts
m Modifying other parameters: doubtful

Complex constructions with non ideal primitives

m lLose the benefit of an eventual security proof
m High risk of early broken versions (AEZ, Kravatte)

m Require a large effort of cryptanalysis to obtain confidence

OpenSSL

disco-c libdisco (go)

2,000 LOC

v
% ‘ 700,000 LOC
A

1,000 LOC 4,000 LOC

DiscoNet* (C#)

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.
» Design with mathematical and legal provability in mind.

» Aim at simplicity and small footprint: use a single sponge permutation for key
derivation, confidentiality, integrity, etc. (Instead of distinct algorithms.)

» Use a single state variable in both directions, instead of 84+ cryptovariables.

» |deally this protocol would be realizable with semi-autonomous integrated
hardware, without much CPU or MCU involvement.

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S, P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S, C, pad) without knowledge of S is bound by a function

of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

o) £) LR 2T AR 2

ff :—,.f_l —

m:a DO 99- 99- 99- 99-
fftll 19 9 Ig
LA PN, fx ;m,; ke] e

¥ 99799=||999TO/wW
X g8 -8 |9 BBB

‘Bf'”ﬁ

fgfgg ﬁ
o — £ =

p

Protocol Buillder's
Warkbench

A couple of suggestions:

— Simplify the suite to one AEAD + one XOF

— Discourage shorter tags (forbid tags <64 bits?)
— Define 32-bit ‘tweak’ for key/nonce/XOF/...
— Ensure parameters afford extensibility (d, h[t)

— Let’s have a protocol effort (cf. AES modes?)

(11

inl

Cryptographic competitions
An 1llustrated history of Ascon
Real-world challenges

Lessons from usable security

Back to the future of PBC

hello@arnepadmos.com

