
Trail Bound Techniques

in Primitives with Weak Alignment

Silvia Mella1

based on a joint work with
Joan Daemen2 and Gilles Van Assche1

1STMicroelectronics 2Radboud University

APBC 2018

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Differential trails

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Differential trails

Differential trails in iterated mappings

Differential trails

Differential trails and weight

w = − log2(DP)

Differential trails

Trail extension

Differential trails

Trail extension

Differential trails

Trail extension

Differential trails

Trail extension

Differential trails

Trail cores

min min

Differential trails

Bounding the weight of trails

I We restrict to trail cores...

I ...up to a given target weight T

I We start from 2-round trail cores and then extend

min min

Tree search

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Tree search

Definition

Set U of units with a total order relation ≺
Tree

I Node: subset of U, represented as a unit list

a = (ui)i=1,...,n u1 ≺ u2 ≺ · · · ≺ un

I Children of a node a:

a ∪ {un+1} ∀ un+1 : un ≺ un+1

I Root: the empty set a = ∅

Tree search

Bounding the cost

Goal: tree traversal up to given cost target T

Cost-related functions

I Cost function: γ(a) (e.g. w rev(a) + wdir(a))

I Cost bounding function: L(a) s.t.

γ(a′) ≥ L(a) for all descendants a′ of a

⇒ Prune all the subtrees with L(a) > T

Tree search

Example: active bit positions

Bounds in Keccak-f

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Bounds in Keccak-f Keccak-f

Keccak-f

Operates on 3D state:

x

y z
state

I (5× 5)-bit slices

I 2`-bit lanes

I parameter 0 ≤ ` < 7

Round function with 5 steps:

I θ: mixing layer

I ρ: inter-slice bit transposition

I π: intra-slice bit transposition

I χ: non-linear layer

I ι: round constants

rounds: 12 + 2` for width b = 2`25

I 12 rounds in Keccak-f [25]

I 24 rounds in Keccak-f [1600]

[Bertoni, Daemen, Peeters, Van Assche, 2008]

Bounds in Keccak-f Keccak-f

Properties of θ

+ =

column parity θ effect

combine

I The θ map adds a pattern, that depends on the parity, to
each plane.

I Affected columns are complemented

I Unaffected columns are not changed

Bounds in Keccak-f Keccak-f

The parity Kernel

+ =

column parity θ effect

combine

I θ acts as the identity if parity is zero

I A state with parity zero is in the kernel (or in |K |)
I A state with parity non-zero is outside the kernel (or in |N|)

Bounds in Keccak-f Trails in Keccak-f

Differential trails in Keccak-f

Round: linear step λ = π ◦ ρ ◦ θ and non-linear step χ

I ai fully determines bi = λ(ai)

I χ has degree 2: w(bi−1) independent of ai
I Minimum reverse weight:

wrev (a1) , min
b0

w(b0)

Bounds in Keccak-f Trails in Keccak-f

Differential trails in Keccak-f

Round: linear step λ = π ◦ ρ ◦ θ and non-linear step χ

I ai fully determines bi = λ(ai)

I χ has degree 2: w(bi−1) independent of ai
I Minimum reverse weight:

wrev (a1) , min
b0

w(b0)

Bounds in Keccak-f Trails in Keccak-f

Differential trails in Keccak-f

Round: linear step λ = π ◦ ρ ◦ θ and non-linear step χ

I ai fully determines bi = λ(ai)

I χ has degree 2: w(bi−1) independent of ai
I Minimum reverse weight:

wrev (a1) , min
b0

w(b0)

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 6-round trail cores

Lemma

A 6-round trail of weight W always contains a 3-round trail of
weight below or equal to

⌊
W
2

⌋

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 3-round trail cores

I Space split based on parity of ai

I Four classes: |K |K |, |K |N|, |N|K | and |N|N|

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 3-round trail cores

I Generating (a1, b1)

I Extending forward by one round

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 3-round trail cores

I Generating (a1, b1)

I Extending forward by one round

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 3-round trail cores

I Generating (a2, b2)

I Extending backward by one round

Bounds in Keccak-f Generating 3-round trail cores

Covering the space of 3-round trail cores

I Generating (a2, b2)

I Extending backward by one round

Bounds in Keccak-f Generating trail cores in |K |

Orbitals

I orbital = [z , x , y1, y2]

2

1

0

-1

-2

y

Bounds in Keccak-f Generating trail cores in |K |

Orbitals (continued)

I y ′1 > y2

2

1

0

-1

-2

y

Bounds in Keccak-f Generating trail cores in |K |

Generating trail cores in |K |

I Root: the empty state

I Units: orbitals = [z , x , y1, y2]

I Bound: cost of the node itself

Bounds in Keccak-f Generating trail cores in |N|

Parity-bare states

Parity-bare state: a state with the minimum number of active bits
before and after θ for a given parity

I 0 active bits in unaffected even columns

I 1 active bit in unaffected odd column

I 5 active bits in affected column either before or after θ

θ

Bounds in Keccak-f Generating trail cores in |N|

States in |N |

Lemma

Each state can be decomposed in a unique way in a parity-bare
state and a list of orbitals

θ

Bounds in Keccak-f Generating trail cores in |N|

States in |N |

Lemma

Each state can be decomposed in a unique way in a parity-bare
state and a list of orbitals

θ

Bounds in Keccak-f Generating trail cores in |N|

Orbital tree

I Root: a parity-bare state

I Units: orbitals in unaffected columns

I Bound: cost of the trail itself

Bounds in Keccak-f Generating trail cores in |N|

Run tree

I Root: the empty state

I Units: column assignments (x, z, odd/affected, column value)

I Bound: cost minus potential loss due to new CAs

Bounds in Keccak-f Extending trails

Trail extension

Bounds in Keccak-f Extending trails

Tree-search on affine space

I Affine space: o + 〈b1, . . . , bm〉

a = o +
∑
j

αjbj

I Unit set U = {b1, . . . , bm}
I Root: a = o

I Node: a = (bi) : αi = 1

I Define L(a) to take advantage of stable active bits

Experimental results

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Experimental results

Experimental results

I All 3-round trail cores with weight ≤ 45

20 22 24 26 28 30 32 34 36 38 40 42 44
1

10

102

103

104

T3

#
co

re
s

Keccak-f [200]

Keccak-f [400]

Keccak-f [800]

Keccak-f [1600]

I No 6-round trail with weight ≤ 91

Experimental results

Trails for parity profile

20 22 24 26 28 30 32 34 36 38 40 42 44
1

10

102

103

104

T3

#
co

re
s

|K |K |

28 30 32 34 36 38 40 42 44
1

10

102

103

104

T3

#
co

re
s

|K |N|

27 29 31 33 35 37 39 41 43 45
1

10

102

103

104

T3

#
co

re
s

|N|K |

38 39 40 41 42 43 44 45
1

10

102

103

T3

#
co

re
s

|N|N|

Experimental results

Bounds

rounds b = 200 b = 400 b = 800 b = 1600
2 8 8 8 8
3 20 24 32 32
4 46 [48,63] [48,104] [48,134]
5 [50,89] [50,147] [50,247] [50,372]
6 [92,142] [92,278] [92,556] [92,1112]
nr [276,·] [280,·] [292,·] [368,·]

Symmetry properties

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Symmetry properties

Invariance by translation or rotation

E.g., in Keccak-f , w(τza) = w(a) for any translation τz along z

Symmetry properties

Canonicity

Canonical representation

I Define an order relation on states

I Define the canonical representation as the minimum one, e.g.,

a canonical ⇔ a = min
z
τza

Symmetry properties

Tree search restricted to canonical representations

Reminder

I Set U of units with a total order relation ≺
I Unit list: a = (ui)i=1,...,n with u1 ≺ u2 ≺ · · · ≺ un

Lemma

Assuming that

I ≺lex is the lexicographic order on unit lists

I canonicity is defined w.r.t. ≺lex

then the parent of a canonical pattern is canonical.

⇒ Complete non-canonical subtrees can be pruned

[Mella, Daemen, Van Assche, FSE 2017]

Symmetry properties

Testing for canonicity

Basic algorithm

I Input: unit list a = (ui)i=1,...,n

I For each i

I Transform a such that τ(ui) is ≺-minimum
I Sort the resulting unit list
I Compare it (using ≺lex) to the currently minimum unit

list

I Output: canonical representation (or just true/false)

Conclusions

Outline

1 Differential trails

2 Tree search

3 Bounds in Keccak-f

4 Experimental results

5 Symmetry properties

6 Conclusions

Conclusions

Can the tree search be applied to your cipher?

I How to represent differences in a monotonic way?

I Can symmetry properties be exploited?

I Code available on
https://github.com/KeccakTeam/KeccakTools

https://github.com/KeccakTeam/KeccakTools

Conclusions

Thanks for your attention

	Differential trails
	Tree search
	Bounds in Keccak-f
	Keccak-f
	Trails in Keccak-f
	Generating 3-round trail cores
	Generating trail cores in |K|
	Generating trail cores in |N|
	Extending trails

	Experimental results
	Symmetry properties
	Conclusions

