Trail Bound Techniques in Primitives with Weak Alignment

Silvia MELLA^1

based on a joint work with Joan $DAEMEN^2$ and Gilles $VAN ASSCHE^1$

¹STMicroelectronics ²Radboud University

APBC 2018

イロン 不良 とうせい かけい 日

Outline

- 1 Differential trails
- 2 Tree search
- **3** Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties

イロト イヨト イヨト ・ ヨト

3

6 Conclusions

Outline

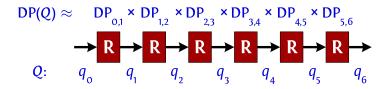
1 Differential trails

- 2 Tree search
- 3 Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties

6 Conclusions

Differential trails

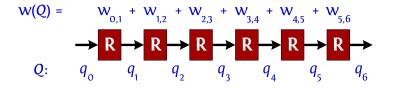
Differential trails in iterated mappings



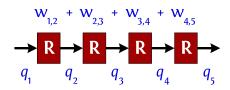
Differential trails

Differential trails and weight

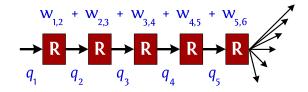
$$w = -\log_2(DP)$$

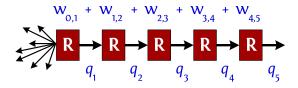


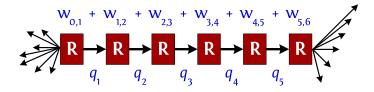
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで



◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

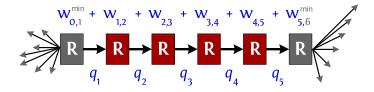






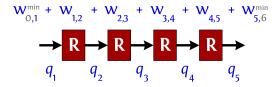
Differential trails

Trail cores



Bounding the weight of trails

- We restrict to trail cores...
- ...up to a given target weight T
- ▶ We start from 2-round trail cores and then extend



Outline

1 Differential trails

2 Tree search

3 Bounds in KECCAK-f

- 4 Experimental results
- 5 Symmetry properties

6 Conclusions

Definition

Set U of units with a total order relation \prec

Tree

▶ Node: subset of *U*, represented as a *unit list*

$$a = (u_i)_{i=1,\ldots,n}$$
 $u_1 \prec u_2 \prec \cdots \prec u_n$

Children of a node a:

$$a \cup \{u_{n+1}\} \quad \forall \ u_{n+1} : u_n \prec u_{n+1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• Root: the empty set $a = \emptyset$

Bounding the cost

Goal: tree traversal up to given cost target T

Cost-related functions

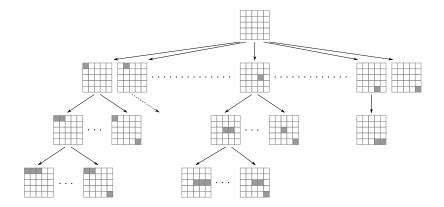
• Cost function: $\gamma(a)$ (e.g. $w^{\text{rev}}(a) + w^{\text{dir}}(a)$)

Cost bounding function: L(a) s.t.

 $\gamma(a') \ge L(a)$ for all descendants a' of a

\Rightarrow Prune all the subtrees with L(a) > T

Example: active bit positions

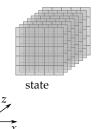


Outline

- 1 Differential trails
- 2 Tree search
- **3** Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties
- 6 Conclusions

Keccak-f

Operates on 3D state:



- (5×5) -bit slices
- ▶ 2^ℓ-bit lanes
- parameter $0 \le \ell < 7$

Round function with 5 steps:

- θ: mixing layer
- ρ : inter-slice bit transposition
- π : intra-slice bit transposition
- χ: non-linear layer
- *i*: round constants

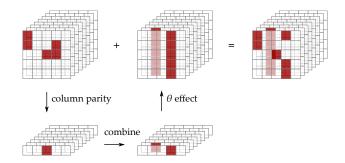
rounds: $12 + 2\ell$ for width $b = 2^{\ell}25$

- ▶ 12 rounds in KECCAK-*f*[25]
- ▶ 24 rounds in KECCAK-*f*[1600]

・ロン ・回 と ・ ヨン ・ ヨン

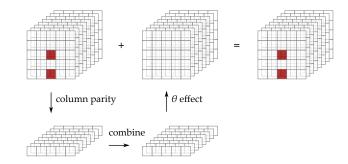
[Bertoni, Daemen, Peeters, Van Assche, 2008]

Properties of θ



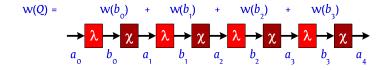
- The θ map adds a pattern, that depends on the parity, to each plane.
- Affected columns are complemented
- Unaffected columns are not changed

The parity Kernel



- θ acts as the identity if parity is zero
- A state with parity zero is in the kernel (or in |K|)
- A state with parity non-zero is outside the kernel (or in |N|)

Differential trails in KECCAK-f



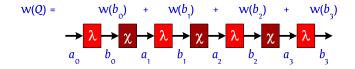
Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- a_i fully determines $b_i = \lambda(a_i)$
- χ has degree 2: w(b_{i-1}) independent of a_i
- Minimum reverse weight:

$$\mathrm{w}_{rev}(a_1) riangleq \min_{b_0} \mathrm{w}(b_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Differential trails in KECCAK-f



Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- a_i fully determines $b_i = \lambda(a_i)$
- χ has degree 2: w(b_{i-1}) independent of a_i
- Minimum reverse weight:

$$\mathrm{w}_{rev}(a_1) riangleq \min_{b_0} \mathrm{w}(b_0)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 うの()

Differential trails in KECCAK-f

Round: linear step $\lambda = \pi \circ \rho \circ \theta$ and non-linear step χ

- a_i fully determines $b_i = \lambda(a_i)$
- χ has degree 2: w(b_{i-1}) independent of a_i
- Minimum reverse weight:

$$\mathrm{w}_{rev}(a_1) \triangleq \min_{b_0} \mathrm{w}(b_0)$$

Covering the space of 6-round trail cores

Lemma

A 6-round trail of weight W always contains a 3-round trail of weight below or equal to $\left\lfloor\frac{W}{2}\right\rfloor$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Covering the space of 3-round trail cores

- Space split based on parity of a_i
- ► Four classes: |K|K|, |K|N|, |N|K| and |N|N|

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

Covering the space of 3-round trail cores

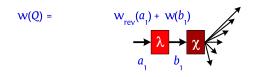
$$w(Q) = w_{rev}(a_1) + w(b_1)$$

$$\xrightarrow{\lambda}_{a_1} b_1$$

- ▶ Generating (a₁, b₁)
- Extending forward by one round

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

Covering the space of 3-round trail cores



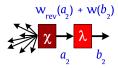
- ▶ Generating (a₁, b₁)
- Extending forward by one round

Covering the space of 3-round trail cores

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

- ▶ Generating (a₂, b₂)
- Extending backward by one round

Covering the space of 3-round trail cores



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ = 臣 = のへで

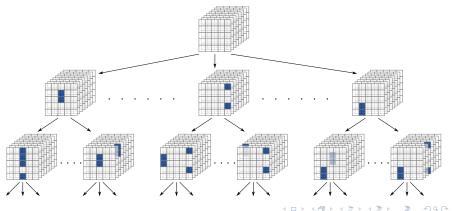
- ▶ Generating (a₂, b₂)
- Extending backward by one round

Orbitals

Orbitals (continued)

Generating trail cores in |K|

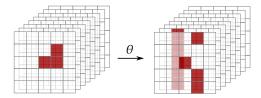
- Root: the empty state
- Units: orbitals = $[z, x, y_1, y_2]$
- Bound: cost of the node itself



Parity-bare states

Parity-bare state: a state with the minimum number of active bits before and after θ for a given parity

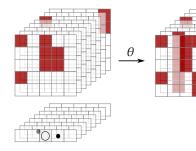
- O active bits in unaffected even columns
- 1 active bit in unaffected odd column
- ▶ 5 active bits in affected column either before or after θ



States in |N|

Lemma

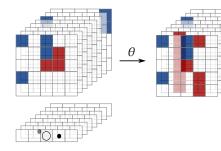
Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals



States in |N|

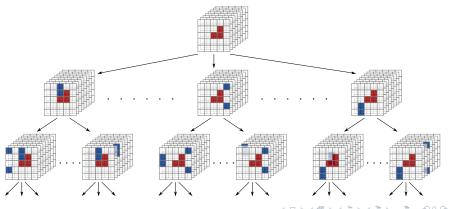
Lemma

Each state can be decomposed in a unique way in a parity-bare state and a list of orbitals



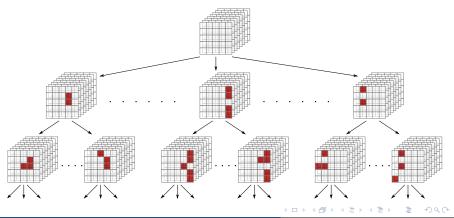
Orbital tree

- Root: a parity-bare state
- Units: orbitals in unaffected columns
- Bound: cost of the trail itself

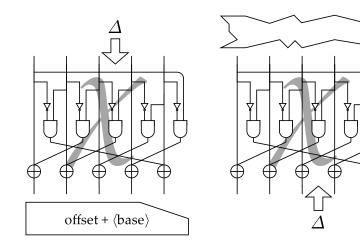


Run tree

- Root: the empty state
- Units: column assignments (x, z, odd/affected, column value)
- Bound: cost minus potential loss due to new CAs



Trail extension



Tree-search on affine space

• Affine space:
$$o + \langle b_1, \ldots, b_m \rangle$$

$$a = o + \sum_{j} \alpha_{j} b_{j}$$

• Unit set
$$U = \{b_1, \ldots, b_m\}$$

• Node:
$$a = (b_i)$$
 : $lpha_i = 1$

Define L(a) to take advantage of stable active bits

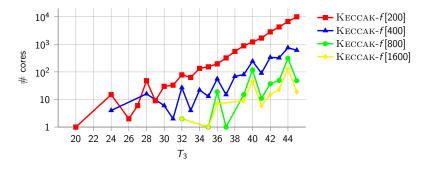
Outline

- 1 Differential trails
- 2 Tree search
- 3 Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties

6 Conclusions

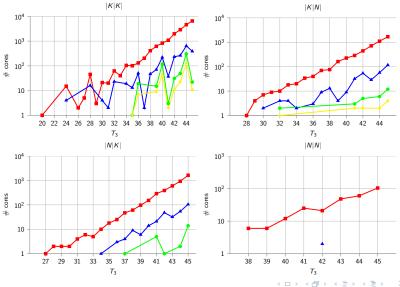
Experimental results

• All 3-round trail cores with weight \leq 45



• No 6-round trail with weight \leq 91

Trails for parity profile



E のQC

Bounds

rounds	<i>b</i> = 200	<i>b</i> = 400	<i>b</i> = 800	b = 1600
2	8	8	8	8
3	20	24	32	32
4	46	[48,63]	[48,104]	[48,134]
5	[50,89]	[50,147]	[50,247]	[50,372]
6	[92,142]	[92,278]	[92,556]	[92,1112]
n _r	[276,·]	[280,·]	[292,·]	[368,·]

Outline

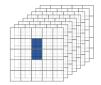
- 1 Differential trails
- 2 Tree search
- 3 Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties
- 6 Conclusions

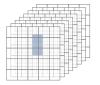
▲□ > ▲圖 > ▲目 > ▲目 > → 目 → のへで

Symmetry properties

Invariance by translation or rotation

E.g., in KECCAK-f, $w(\tau_z a) = w(a)$ for any translation τ_z along z





◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Canonical representation

- Define an order relation on states
- Define the canonical representation as the minimum one, e.g.,

$$a \text{ canonical } \Leftrightarrow a = \min_{z} \tau_z a$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

Tree search restricted to canonical representations

Reminder

- Set U of units with a total order relation \prec
- Unit list: $a = (u_i)_{i=1,...,n}$ with $u_1 \prec u_2 \prec \cdots \prec u_n$

Lemma

Assuming that

- $\blacktriangleright \prec_{\rm lex}$ is the lexicographic order on unit lists
- canonicity is defined w.r.t. \prec_{lex}

then the parent of a canonical pattern is canonical.

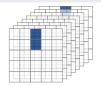
 \Rightarrow Complete non-canonical subtrees can be pruned

[Mella, Daemen, Van Assche, FSE 2017]

Testing for canonicity

Basic algorithm

- ▶ Input: unit list $a = (u_i)_{i=1,...,n}$
- For each i
 - Transform *a* such that $\tau(u_i)$ is \prec -minimum
 - Sort the resulting unit list
 - ► Compare it (using ≺_{lex}) to the currently minimum unit list
- Output: canonical representation (or just true/false)



Outline

- 1 Differential trails
- 2 Tree search
- **3** Bounds in KECCAK-*f*
- 4 Experimental results
- 5 Symmetry properties

6 Conclusions

Can the tree search be applied to your cipher?

- How to represent differences in a monotonic way?
- Can symmetry properties be exploited?
- Code available on https://github.com/KeccakTeam/KeccakTools

(日)

3

Thanks for your attention