Key-Recovery Attacks on Keccak-Based Constructions

Ling Song

Joint work with Jian Guo, Danping Shi and San Ling

10 October, 2018 @ Milano, Italy

Outlines

- Introduction
- Cube Attacks
- MILP Model for Searching Cubes
- Main Results

Outline

- Introduction
 - Keyed Keccak Constructions
 - Our Work
- Cube Attacks
- 3 MILP Model for Searching Cubes
- 4 Main Results

KECCAK

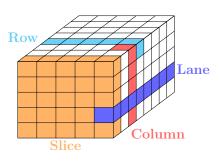
- Permutation-based hash function
 - Designed by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
 - Selected as SHA-3 standard
 - Underlying permutation: KECCAK-p[1600, 24]
- KECCAK under keyed modes: KMAC, KECCAK-MAC
- Its relatives
 - Authenticated encrytion: KEYAK, KETJE
 - Pseudorandom function: KRAVATTE
 - Permutation: X00D00

Keccak- $p[b, n_r]$ Permutation

- *b* bits: seen as a 5×5 array of $\frac{b}{25}$ -bit lanes, A[x, y]
- \bullet n_r rounds
- each round R consists of five steps:

$$R = \iota \circ \chi \circ \pi \circ \rho \circ \theta$$

- χ : S-box on each row
- π, ρ: change the position of state bits



http://www.iacr.org/authors/tikz/

Keccak-p Round Function: θ

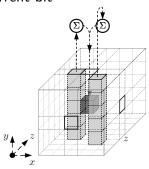
 θ step: adding two columns to the current bit

$$C[x] = A[x, 0] \oplus A[x, 1] \oplus A[x, 2] \oplus$$

$$A[x, 3] \oplus A[x, 4]$$

$$D[x] = C[x - 1] \oplus (C[x + 1] \iff 1)$$

$$A[x, y] = A[x, y] \oplus D[x]$$

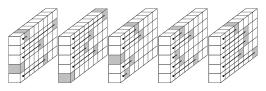


http://keccak.noekeon.org/

- The Column Parity kernel
 - If $C[x] = 0, 0 \le x < 5$, then the state A is in the CP kernel.

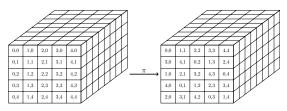
Keccak-p Round Function: ρ, π

 ρ step: lane level rotations, $A[x, y] = A[x, y] \ll r[x, y]$



http://keccak.noekeon.org/

 π step: permutation on lanes, A[y, 2*x+3*y] = A[x, y]



Keccak-p Round Function: χ

 χ step: 5-bit S-boxes, nonlinear operation on rows

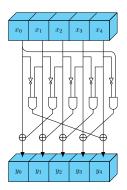
$$y_0 = x_0 + (x_1 + 1) \cdot x_2,$$

$$y_1 = x_1 + (x_2 + 1) \cdot x_3,$$

$$y_2 = x_2 + (x_3 + 1) \cdot x_4,$$

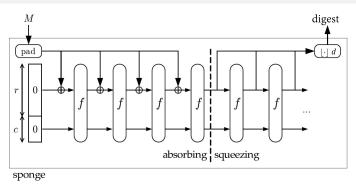
$$y_3 = x_3 + (x_4 + 1) \cdot x_0,$$

$$y_4 = x_4 + (x_0 + 1) \cdot x_1.$$



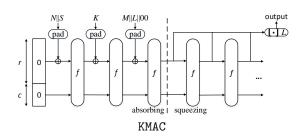
- Nonlinear term: product of two adjacent bits in a row.
- The algebraic degree of n rounds is 2^n .

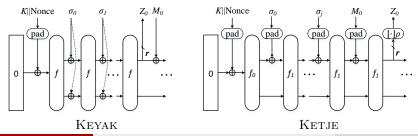
Keccak: Keccak-p[1600, 24] + Sponge



- Sponge construction [BDPV11]
 - b-bit permutation f
 - Two parameters: bitrate r, capacity c, and b = r + c.
- Keccak-Mac
 - Take K||M| as input

Keyed Keccak Constructions





Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Contributions

- Mixed Integer Linear Programming models for searching two types of cube attacks
- Best key recovery attacks on round-reduced KMAC, KEYAK, KETJE and KECCAK-MAC so far
- Solve the open problem of "Full State Keyed Duplex (Sponge)"

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Contributions

- Mixed Integer Linear Programming models for searching two types of cube attacks
- Best key recovery attacks on round-reduced KMAC, KEYAK, KETJE and KECCAK-MAC so far
- Solve the open problem of "Full State Keyed Duplex (Sponge)"

"Whether these attacks can still be extended to more rounds by exploiting full-state absorbing remains an open question".

— the Keyak designers

Intuition: $deg(\chi) = 2$. Consider algebraic cryptanalsis, in paticular, cube attacks.

Contributions

- Mixed Integer Linear Programming models for searching two types of cube attacks
- Best key recovery attacks on round-reduced KMAC, KEYAK, KETJE and KECCAK-MAC so far
- Solve the open problem of "Full State Keyed Duplex (Sponge)"

Ling Song, Jian Guo: Cube-Attack-Like Cryptanalysis of Round-Reduced Keccak Using MILP. IACR Transactions on Symmetric Cryptology, 2018(3), 182-214.

Ling Song, Jian Guo, Danping Shi, San Ling: New MILP Modeling: Improved Conditional Cube Attacks on Keccak-based Constructions. To appear in ASIACRYPT 2018

Outline

- Introduction
- Cube Attacks
 - auxCube
 - conCube
- 3 MILP Model for Searching Cubes
- 4 Main Results

Cube Attacks [DS09] (Higher Order Differential Cryptanalysis)

• Given a Boolean polynomial $f(k_0, ..., k_{n-1}, v_0, ..., v_{m-1})$ and a monomial $t_I = v_{i_1}...v_{i_d}$, $I = \{v_{i_1},...,v_{i_d}\}$, f can be written as

$$f(k_0,...,k_{n-1},v_0,...,v_{m-1})=t_l\cdot p_{S_l}+q$$

- q contains terms that are not divisible by t_i
- p_{Si} is called the superpoly of I in f
- $v_{i_1}, ..., v_{i_d}$ are called cube variables. d is the dimension.
- The the cube sum is exactly

$$\sum_{(v_{i_1},...,v_{i_d})\in C_I} f(k_0,...,k_{n-1},v_0,...,v_{m-1}) = p_{S_I}$$

- Cube attacks: p_{S_i} is a linear polynomial in key bits.
- Cube testers: distinguish p_{S_i} from a random function.
- If deg(f) < d, $p_{S_i} = 0$

Cube-Attack-Like Cryptanalysis [DMP+15]

Renamed auxCube

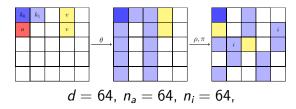
Idea: do not recover the exact linear p_{S_l} but try to limit the number (n_i) of key bits involved in p_{S_l} using n_a auxiliary variables.

Preprocessing phase Build a lookup table. The complexity is 2^{n_i+d} .

n_i key bits	Cube sum	
0000	01011	
0001	11010	
1111	10110	

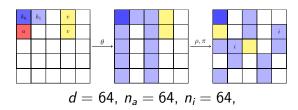
Online phase Guess the value of n_a auxiliary variables and then query the cipher to obtain the cube sum; look up the table to recover the n_i key bits. The complexity is 2^{n_a+d} .

auxCube On KECCAK



The algebraic degree of n rounds is 2^n . Linearize the first round by avoiding adjacent cube variables.

auxCube On KECCAK



The algebraic degree of n rounds is 2^n . Linearize the first round by avoiding adjacent cube variables.

Task of the MILP Model

- Find 2^{n-1} -dimensional cubes where n is as large as possible; (attack more rounds).
- ② Find balanced attacks where n_i and n_a are close and as small as possible. (low complexity).

Conditional Cube Testers of Keccak [HWX+17]

Renamed conCube

conCube

- Linearize the first round.
- There exist *p* cube variables that are not multiplied with any cube variable even in the second round under certain *conditions*.

Type I conCube

- p = 1.
- Given such a cube with $d = 2^{n-1}$, $p_{S_i} = 0$ for n-round KECCAK if the conditions are met.

Type II conCube

- *p* = *d*.
- Given such a cube with $d = 2^{n-2} + 1$, $p_{S_l} = 0$ for n-round KECCAK if the conditions are met.

ConCube on KECCAK

If the conditions involve the key, the conditional cube can be used to recover the key.

Task of the MILP Model

- Find Type I (II) cubes with dimension 2^{n-1} $(2^{n-2}+1)$ where n is as large as possible; (attack more rounds).
- 2 The number of conditions is minimized. (low complexity).

Outline

- MILP Model for Searching Cubes
 - General Framework
 - Modeling the First χ
 - Modeling the Activeness of Column Sums

Milano, Italy

Mixed Integer Linear Programming

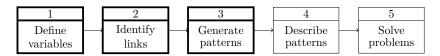
An MILP problem is of the form

$$\begin{array}{ccc}
\min & c^T x \\
Ax \ge b \\
x \ge 0 \\
x \in \mathbb{Z}
\end{array}$$

- Solvers
 - Gurobi, CPLEX, SCIP, ...
- Application to cryptanalysis since Mouha et al.'s pioneering work [MWGP11]

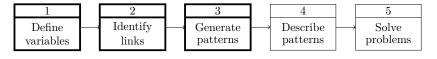
MILP-based Cryptanalysis

- Define variables which are mostly binary for the crypto problem.
- Identify links between the variables
- Generate all valid patterns for the variables
- Describe valid patterns with inequalities
- Solve the MILP problem



MILP-based Cryptanalysis

- Define variables which are mostly binary for the crypto problem.
- Identify links between the variables
- Generate all valid patterns for the variables
- Describe valid patterns with inequalities
- Solve the MILP problem



Example: construct an MILP model for searching Type II conCubes (for FKD)

- $lue{}$ Modeling the first χ
- Modeling the activeness of column sums

1. Define variables

Let a[x][y][z] be the state:

$$a \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{b} \xrightarrow{\chi} \mathbf{c} \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{d} \xrightarrow{\chi} e$$

A[x][y][z] = 1 if a[x][y][z] is active, *i.e.*, containing cube variables:

$$A \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{B} \xrightarrow{\chi} \mathbf{C} \xrightarrow{\pi \circ \rho \circ \theta} \mathbf{D} \xrightarrow{\chi} E$$

V[x][y][z] = 1 indicates that bit b[x][y][z] is constrained to the value of H[x][y][z].

2. Identify links: propagation of variables through χ

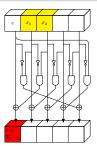
Observation

- **①** Linearize χ by avoiding adjacent variables in the input.
- ② Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.

2. Identify links: propagation of variables through χ

Observation

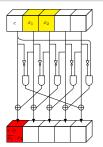
- lacksquare Linearize χ by avoiding adjacent variables in the input.
- ② Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.

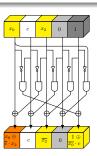


2. Identify links: propagation of variables through χ

Observation

- **1** Linearize χ by avoiding adjacent variables in the input.
- ② Bit 1 (0) on the left (right) of the variable helps to restrict the diffusion of variables through χ , while an unknown constant diffuses the variable in an uncertain way.





$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

$$b[x]$$
 $b[x+1]$ $b[x+2]$ $c[x]$

$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

b[x]	b[x + 1]	b[x + 2]	c[x]
cst	cst	cst	cst

¹Omit coordinates [y][z].

$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

b[x]	b[x + 1]	b[x + 2]	c[x]
cst	cst	cst	cst
var	cst	*	var

¹Omit coordinates [y][z].

$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	b[x + 2]	c[x]
cst	cst	cst	cst
var	cst	*	var
cst	cst	var	var (deg \leq 1)

¹Omit coordinates [y][z].

$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

b[x]	b[x+1]	b[x + 2]	c[x]
cst	cst	cst	cst
var	cst	*	var
cst	cst	var	var (deg ≤ 1)
cst	1	var	cst

¹Omit coordinates [y][z].

$$c[x] = b[x] + (b[x+1] + 1) \cdot b[x+2]^{1}$$

b[x]	b[x + 1]	b[x + 2]	c[x]
cst	cst	cst	cst
var	cst	*	var
cst	cst	var	var (deg ≤ 1)
cst	1	var	cst
:	:	:	:

¹Omit coordinates [y][z].

$$B[x] = \begin{cases} 0, & b[x] \text{ is a constant;} \\ 1, & b[x] \text{ is a var.} \end{cases}$$

$$V[x] = \begin{cases} 0, & \text{no condidtion on } b[x]; \\ 1, & b[x] \text{ is restricted to } 0/1. \end{cases}$$

Modeling the First χ

3. Generate valid patterns

$$B[x] = \left\{ \begin{array}{ll} 0, & b[x] \text{ is a constant;} \\ 1, & b[x] \text{ is a var.} \end{array} \right. \quad V[x] = \left\{ \begin{array}{ll} 0, & \text{no condidtion on } b[x]; \\ 1, & b[x] \text{ is restricted to } 0/1. \end{array} \right.$$

Table: Diffusion of variables through χ

B[x]	B[x+1]	B[x+2]	V[x+1]	V[x+2]	H[x+1]	H[x+2]	C[x]
0	0	0	*	*	*	*	0
1	0	0	*	*	*	*	1
0	0	1	0	0	*	*	1
0	0	1	1	0	1	*	0
0	0	1	1	0	0	*	1
0	1	0	0	0	*	*	1
0	1	0	0	1	*	0	0
0	1	0	0	1	*	1	1
1	0	1	0	0	*	*	1
1	0	1	1	0	*	*	1

Modeling the First χ

4. Describe valid patterns with inequality

By generating the convex hull of the set of patterns [SHW+14], we get

$$-B[x] - B[x+1] \ge -1$$

$$-B[x] + C[x] \ge 0$$

$$-B[x+2] - V[x+2] \ge -1$$

$$-B[x+1] - V[x+1] \ge -1$$

$$-B[x] - B[x+1] - H[x+2] + C[x] \ge -1$$

$$B[x] - V[x+1] - H[x+1] - C[x] \ge -2$$

$$B[x] - V[x+2] + H[x+2] - C[x] \ge -1$$

$$B[x] + B[x+1] + B[x+2] - C[x] \ge 0$$

$$-B[x+1] - B[x+2] + V[x+1] + V[x+2] + C[x] \ge 0$$

$$-B[x+1] - B[x+2] + V[x+2] + H[x+1] + C[x] \ge 0$$

1. Define variables

For the state

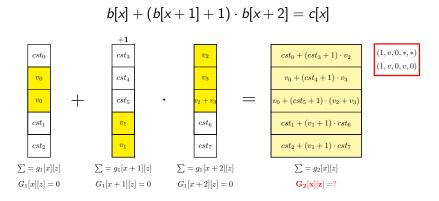
- $a \xrightarrow{\pi \circ \rho \circ \theta} b \xrightarrow{\chi} c \xrightarrow{\pi \circ \rho \circ \theta} d \xrightarrow{\chi} e$
- Column sums before χ : $g_1[x][z] = \sum_y b[x][y][z]$
- Column sums after χ : $g_2[x][z] = \sum_y c[x][y][z]$

Variables for the activeness

- $G_1[x][z] = 1$ if $g_1[x][z]$ is active.
- $G_2[x][z] = 1$ if $g_2[x][z]$ is active.

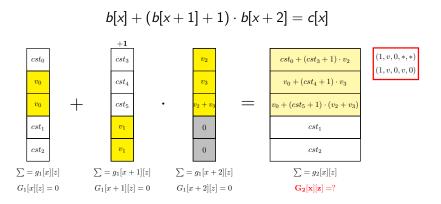
In which case $G_2[x][z]=0$?

2. Identify links for $G_2[x][z]$



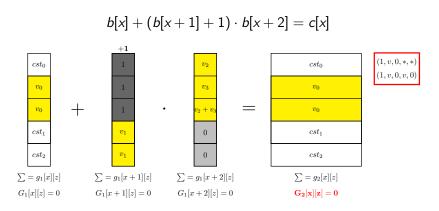
Cond1: $G_1[x][z]$ must be 0.

2. Identify links for $G_2[x][z]$



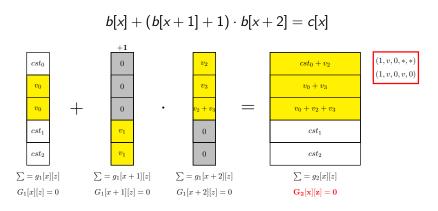
Cond2: No variable in column (x + 1, z) of b propagates to column (x, z) of c.

2. Identify links for $G_2[x][z]$



Cond3.1: No variable in column (x + 2) of b propagates to column (x, z) of c.

2. Identify links for $G_2[x][z]$



Cond3.2: All the variables in column (x+2) of b propagate to column (x, z) of c and $G_1[x+2][z] = 0$.

2. Identify links for $G_2[x][z]$

Condition for $G_2[x][z] = 0$

Cond1 \land Cond2 \land (Cond3.1 \lor Cond3.2)

2. Identify links for $G_2[x][z]$

Condition for $G_2[x][z] = 0$

Cond1 \land Cond2 \land (Cond3.1 \lor Cond3.2)

⇒ Model each part individually.

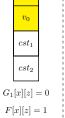
 $G_1[x][z]$ together with F[x][z] describe a column before χ .

- The column is not active, i.e., there is no variable:
- The column is active and the column sum is active;
- The column is active and the

 $G_1[x][z] = 0$

F[x][z] = 0

(1)



(2)

 cst_0

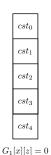
 v_0

(3)

 v_0

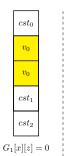
 $G_1[x][z]$ together with F[x][z] describe a column before χ .

- The column is not active, i.e., there is no variable:
- The column is active and the column sum is active;
- column sum is inactive.



F[x][z] = 0

(1)



F[x][z] = 1

(2)



(3)

The patterns of $B[x][y][z], y = 0, \dots, 4$ and $F[x][z], G_1[x][z]$ fall into a set of 58 discrete points in \mathbb{R}^7 .

Table: Inequalities modeling the activeness of a column

$$-F[x][z] - G_1[x][z] \ge -1$$

$$-B[x][0][z] + F[x][z] + G_1[x][z] \ge 0$$

$$-B[x][1][z] + F[x][z] + G_1[x][z] \ge 0$$

$$-B[x][2][z] + F[x][z] + G_1[x][z] \ge 0$$

$$-B[x][3][z] + F[x][z] + G_1[x][z] \ge 0$$

$$-B[x][4][z] + F[x][z] + G_1[x][z] \ge 0$$

$$\sum_{y} B[x][y][z] - 2F[x][z] - G_1[x][z] \ge 0$$

2. Identify links for $G_2[x][z]$

Condition for $G_2[x][z] = 0$

Cond1 \land Cond2 \land (Cond3.1 \lor Cond3.2)

⇒ Model each part individually.

Variables

- Cond2 \leftrightarrow M[x][z] = 0
- P[x][y][z] = 1 if the variable at (x + 1, y, z) is propagated to (x, y, z) uncertainly.

Inequalities

$$M[x][z] - P[x][y][z] \ge 0, y = 0, \dots, 4.$$

 $\sum_{y} P[x][y][z] - M[x][z] \ge 0.$

P[x]	B[x+1]	V[x + 2]	inequalities
0	0	*	$-P[x]+B[x+1]\geq 0$
1	1	0	$-P[x]-V[x+2]\geq -1$
0	1	1	$P[x] - B[x+1] + V[x+2] \ge 0$

2. Identify links for $G_2[x][z]$

Condition for $G_2[x][z] = 0$

Cond1 \land Cond2 \land (Cond3.1 \lor Cond3.2)

 \Rightarrow See the paper.

The Full Model

Objective

$$min \quad \sum V[x][y][z]$$

Linear constraints

Dimension

$$\sum B[x][y][z] - \sum F[x][z] = 2^{n-2} + 1$$

Other inequalities

Outline

- Introduction
- Cube Attacks
- 3 MILP Model for Searching Cubes
- Main Results
 - Conclusion

Results of Key Recovery Attacks

- First analytical results on KMAC
- Improve the attack against Lake Keyak (128) from 6 to 8 rounds in the NR setting, and attack 9 rounds if the key size is 256 bits.
- Solve the FKD open problem

Target	<i>K</i>	С	Rounds	Time	Reference	Туре
KMAC128	128	256	7/24	2 ⁷⁶	this	conCube
KMAC256	256	512	9/24	2 ¹⁴⁷	this	Concube
Target	<i>K</i>	NR	Rounds	Time	Reference	Туре
	128	Yes	6/12	2 ³⁷	[DMP+15]	cube
Lake KEYAK	128	No	8/12	2 ⁷⁴	[HWX+17]	conCube
Lake KEYAK	128	Yes	8/12	2 ^{71.01}	this	
	256	Yes	9/14	2 ^{137.05}	this	conCube
River Keyak	128	Yes	8/12	2 ⁷⁷	this	Concube
FKD[1600]	128	No	9/-	2 ⁹⁰	this	

Attack complexity improvements on $K{\ensuremath{\mathrm{ETJE}}}$

Target	K	Rounds	Т	М	Reference	Туре
KETJE Major	128	7/13	2 ⁸³	-	[LBD+17]	
IXELLE IVIAJOI	128	7/13	271.24	-	this	conCube
KETJE Minor	128	7/13	2 ⁸¹	-	[LBD+17]	Concube
IXE13E WIIIO	128	7/13	2 ^{73.03}	-	this	
KETJE Sr V1	128	7/13	2 ¹¹⁵	2 ⁵⁰	[DMP+15]	auxCube
Keije Ji Vi	128	7/13	2^{91}	-	this	conCube
KETJE Sr V2	128	7/13	2 ^{113.58}	2 ⁴⁸	[DLWQ17]	
	128	7/13	2 ⁹⁹	2^{33}	this	
	96	5/13	2 ⁵⁶	2^{38}	[DLWQ17]	
Ketje Jr V1	96	5/13	$2^{36.86}$	2^{18}	this	
	72	6/13	268.04	2^{34}	this	auxCube
	96	5/13	2 ^{50.32}	232	[DLWQ17]	
Ketje Jr V2	96	5/13	2 ^{34.91}	2^{15}	this	
	80	6/13	$2^{59.17}$	2^{25}	this	
Xoodoo	128	6/-	2 ⁸⁹	2^{55}	this	

Attacks on Keccak-MAC

Target	<i>K</i>	С	Rounds	Time	Reference	Туре	
	128	256/512	7/24	2 ⁷²	[HWX+17]	conCube	
Keccak-MAC		768	7/24	2 ⁷⁵	[LBD+17]		
		1024	6/24	2 ^{58.3}	[LDD 17]		
		1024	6/24	2 ⁴⁰	this		
		1024	7/24	2 ¹¹¹	this	auxCube	

Comparison of auxCube and conCube

	auxCube	conCube
Model	1 round, simple	2 rounds, complex
Degree of freedom	When DF is small, e.g. KETJE	When DF is large, e.g. FKD
Fully unknown inter- nal state	No	Yes, e.g. KMAC, FKD
Memory	Non-negligible	Negligible

Conclusion

- Two MILP models for searching cubes for KECCAK.
- First attacks on KMAC and XOODOO, and improved attacks on KEYAK and KETJE.
- Solve the FKD open problem.
- The security of Keccak-based constructions is far from being threatened.

Conclusion

- Two MILP models for searching cubes for KECCAK.
- First attacks on KMAC and XOODOO, and improved attacks on KEYAK and KETJE.
- 3 Solve the FKD open problem.
- The security of Keccak-based constructions is far from being threatened.

Thank you for your attention!